• Title/Summary/Keyword: treatment related death

Search Result 601, Processing Time 0.024 seconds

Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism

  • Ju, Sunghee;Seo, Ji Yeon;Lee, Seung Kwon;Oh, Jisun;Kim, Jong-Sang
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.108-118
    • /
    • 2021
  • Background: Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods: A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results: Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion: These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.

The Role of Bloodletting and Cupping in Severe Acute Urticaria and Angioedema as Skin Emergencies in Persian Medicine

  • Shirazi, Maryam Taghavi;Kenari, Hoorieh Mohammadi;Eghbalian, Fatemeh
    • Journal of Pharmacopuncture
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2022
  • Objectives: Some dermatological diseases can be life-threatening. Urticaria and angioedema are common reasons for patients to seek treatment at an emergency department. Severe, generalized urticaria and angioedema can endanger patients' lives by involving the airways and causing anaphylactic shock. The humor-based Persian Medicine (PM) concepts of Shara and Mashara, referring to two kinds of skin lesions, have similarities to urticaria and angioedema, respectively. This article aims to provide scientific evidence regarding the application of PM as an early intervention strategy in the emergency management of urticaria and angioedema. Methods: This was a narrative review of PM studies identified by searching medical databases using search terms related to these diseases, as well as risk-associated keywords such as "fatal", "death", "life-threatening", "emergency", "cupping", and "bloodletting". Data were then compared, interpreted, and analyzed. Results: PM scholars consider the human body as a unified whole and believe in an inner power (Nature) which stems from the body. When the presence of excessive hot substances cause an imbalance of bodily humors, Nature directs their heated vapors sharply toward the skin, thus causing Shara and Mashara. If there is a high risk of inflammation spreading to vital organs under severe conditions, urgent manual interventions are crucial. Conclusion: In serious conditions of urticaria and angioedema, Fasd or bloodletting and Hijama can be effective in speeding up the control of lesions and reducing morbidity and mortality. Consequently, the development of integrated Persian and conventional medicines may provide new therapeutic pathways for skin emergencies.

Tracheostomy Performed by a Head and Neck Surgeon Under the Supervision of an Intensive Care Unit Specialists in the COVID-19 Era: A Retrospective Analysis (COVID-19 시대에 중환자실 전담의사 감독 하에 두경부 전문의에 의해 시행된 기관절개술에 대한 후향적 분석 연구)

  • Han, Won Ho;Lee, Yun Im;Baek, Sunhwa;Seok, Jungirl
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.2
    • /
    • pp.97-102
    • /
    • 2022
  • Background and Objectives Tracheostomy is a relatively safe procedure, and the recent emergence of COVID-19 has raised the need to perform tracheostomy immediately in the bed of an intensive care unit (ICU) rather than an operating room. The purpose of this study was to determine the occurrence of complications related to surgical tracheotomy performed in the ICU by an ENT specialist. Materials and Method From March 2019 to January 2022, a total of 101 patients underwent tracheostomy in the ICU. Demographics and complications were classified according to postoperative period. Results Within 24 hours after the procedure, bleeding events were confirmed in 2 patients (2.0%) with mild bleeding. One case (1.0%) of ventricular fibrillation occurred shortly after the procedure. There were no complications from 24 hours to 1 week after procedure. After one week, 4 patients (4.5%) had a local infection, and 3 patients (3.4%) had a tube obstruction. During all follow-up periods, there were no serious side effects such as death, major vascular injury, pneumothroax. No complications were observed throughout the entire period in 6 COVID-19 patients. Conclusion The number of complications of surgical tracheotomy in the ICU performed by a specialist was lower than in previous studies, and there were no complications that delayed treatment or endangered life. The ENT training hospitals should provide sufficient training opportunities for residents to perform surgical tracheostomy and strive to minimize complications associated with the procedure and pre- and post-operative management under the detailed guidance and supervision of specialists.

Comparative study on antioxidant activity of Gold 1, a new strain of Pyropia yezoensis

  • Jimin Hyun;Sang-Woon Lee;Hyeon Hak Jeong;Jae-Il Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.158-168
    • /
    • 2023
  • The global output of Pyropia yezoensis (dried seaweed or laver, also called 'Gim' in Korea) has been reduced over the half-decade due to the wide spread of red rot disease, a serious algal disease affecting P. yezoensis. Recently, Gold 1 (G1), which is a resistant strain of P. yezoensis to red rot disease, was developed and commercialized in South Korea, yet its physiological activity has not been investigated. In this study, a comparative study was performed on G1 and commercially available strain of P. yezoensis (CP) for their antioxidative activities. Aqueous extract of G1 showed more marked 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity compared to that of CP. In 293T cells, antioxidant activity against H2O2-induced reactive oxygen species (ROS) formation was only observed in G1 extract. In addition, G1 extract showed more potent inhibitory effect on H2O2-induced apoptotic cell death than CP extract, as examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and fluorescence microscopy. Expression levels of various apoptosis-related genes, including B-cell lymphoma 2-associated X protein, p53, capase-3, and inflammatory cytokines, in H2O2-treated cells were significantly decreased by the treatment of G1. Taken together, the present study suggests that a new strain of red seaweed G1 can recover oxidative stress effectively by improving the imbalance of ROS generation and has a potential to be used a functional ingredient as an antioxidant source.

Treadmill exercise enhances motor coordination and ameliorates Purkinje cell loss through inhibition on astrocyte activation in the cerebellum of methimazole-induced hypothyroidism rat pups

  • Shin, Mal-Soon;Kim, Bo-Kyun;Lee, Shin-Ho;Kim, Tae-Soo;Heo, Yu-Mi;Choi, Jun-Ho;Kim, Chang-Ju;Lim, Baek-Vin
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.73-84
    • /
    • 2012
  • Thyroid hormones are important for the development of the brain including the cerebellum. In the present study, we investigated the effect of treadmill exercise on the survival of Purkinje neurons and the activation of astrocytes in the cerebellar vermis of hypothyroidism-induced rat pups. On the day of perinatal 14, pregnant rats were divided into two groups (n = 5 in each group): the pregnant control group and the pregnantmethimazole (MMI)-treated group. For the induction of hypothyroidism in the rat pups, MMI was added to the drinking water (0.02% wt/vol), from the day of perinatal 14 to postnatal 49. After delivery, male rat pups born from the pregnant control group were assigned to the control group. Male rat pups born from the MMI-treated group were divided into the hypothyroidism-induction group, the hypothyroidism-induction with treadmill exercise group, and the hypothyroidism-induction with thyroxine (T4) treatment group (n = 10 in each group). The rat pups in the exercise group were forced to run on a treadmill for 30 min once a day for 4 weeks, starting on postnatal day 22. In the hypothyroidism-induced rat pups, motor coordination was reduced and Purkinje cell death and reactive astrocytes in the cerebellar vermis were increased. Treadmill exercise enhanced motor coordination, increased the survival of Purkinje neurons, down-regulated reactive astrocytes, and enhanced brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) expressions in the hypothyroidism-induced rat pups. These results suggest that treadmill exercise has beneficial effects in terms of protecting against thyroid dysfunction by increasing T3 and T4 and the related protein, BDNF, as well as TrkB, inhibition on astrocyte activation and the reduction of Purkinje cell loss regarding the cerebellum in hypothyroidism rat pups.

Anticancer effect of metformin alone and in combination with 2-deoxy-D-glucose on mouse T cell lymphoma EL4 cells (마우스 T 세포 림프종 EL4 세포에 대한 metformin 단독 및 2-deoxy-D-glucose와 병용의 항암효과 )

  • Si-Yeon Kim;Hong-Gu Joo
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.3
    • /
    • pp.30.1-30.8
    • /
    • 2023
  • Metformin is a treatment used widely for non-insulin-dependent diabetes mellitus with few side effects and acts by inhibiting hepatic gluconeogenesis and glucose absorption from the gastrointestinal tract. Lymphoma is one of the most common hematological malignancies in dogs. Chemotherapy is used mainly on lymphoma, but further research on developing anticancer drugs for lymphoma is needed because of its severe side effects. This study examined the anticancer effects of metformin alone and in combination with 2-deoxy-D-glucose (2-DG), a glucose analog, on EL4 cells (mouse T cell lymphoma). Metformin reduced the metabolic activity of EL4 cells and showed an additive effect when combined with 2-DG. In addition, cell death was confirmed using a trypan blue exclusion test, Hochest 33342/propidium iodide (PI) staining, and Annexin V/PI staining. An analysis of the cell cycle and mitochondria membrane potential (MMP) to investigate the mechanism of action showed that metformin stopped the G2/M phase of EL4 cells, and metformin + 2-DG decreased MMP. Metformin exhibited anticancer effects as a G2/M phase arrest mechanism in EL4 cells and showed additive effects when combined with 2-DG via MMP reduction. Unlike cytotoxic chemotherapeutic anticancer drugs, metformin and 2-DG are related to cellular glucose metabolism and have little toxicity. Therefore, metformin and 2-DG can be an alternative to reduce the toxicity caused by chemotherapeutic anticancer drugs. Nevertheless, research is needed to verify the in vivo efficacy of metformin and 2-DG before they can be used in lymphoma treatments.

Single Dose Oral Toxicity Test of Water Extracts of Stachys sieboldii and Acorus gramineus, and their Mixture in ICR Mice (ICR 마우스를 이용한 초석잠, 석창포 단독추출물 및 복합추출물의 단회경구투여 독성시험)

  • Eun Jung Ahn;Su Young Shin;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.59-59
    • /
    • 2021
  • Stachys sieboldii Miq. (SSM) and Acorus gramineus Soland. (AGS) have been used as traditional medicines for thousands of years in parts of Asia, including Korea, China, and Japan. Recent researches on SSM and AGS have documented a wide spectrum of therapeutic properties, including anti-inflammatory, anti-oxidative, neurodegenerative disease effects. However, the toxicity and safety of SSM and AGS, and their mixture (medicinal herber mixture, MHMIX) were not confirmed. Therefore, this study was performed to evaluate the acute toxicity and safety of SSM, AGS and MHMIX. SSM, AGS and MHMIX were orally administered at a dose of 5,000 mg/kg in ICR mice. Animals were monitored for the mortality and changes in the body weight, clinical signs and gross observation during the 14 days after dosing, upon necropsy. We also measured parameters of organ weight, clinical chemistry, and hematology. No dead and no clinical signs were found during the experiment period after administration of a single oral dose of SSM, AGS and MHMIX. There were no adverse effects on clinical signs, body weight, or organ weight and no gross pathological findings in any treatment group. Therefore, LD50 value of SSM, AGS and MHMIX may be over 5,000 mg/kg and it may have no side toxic effect to ICR mice. The results on the single-dose toxicity of SSM, AGS and MHMIX indicate that it is not possible to reach oral dose levels related to death or dose levels with any harmful side effects.

  • PDF

Systems Pharmacological Analysis of Dichroae Radix in Anti-Tumor Metastasis Activity (시스템 약리학적 분석에 의한 상산의 암전이 억제 효과)

  • Jee Ye Lee;Ah Yeon Shin;Hak Koon Kim;Won Gun An
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.295-313
    • /
    • 2023
  • Objectives : While treatments for cancer are advancing, the development of effective treatments for cancer metastasis, the main cause of cancer patient death, remains insufficient. Recent studies on Dichroae Radix have revealed that its active ingredients have the potential to inhibit cancer metastasis. This study aimed to investigate the cancer metastasis inhibitory effect of Dichroae Radix using network pharmacological analysis. Methods : The active compounds of Dichroae Radix have been identified using Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The UniProt database was used to collect each of information of all target proteins associated with the active compounds. To find the bio-metabolic processes associated with each target, the DAVID6.8 Gene Functional classifier tool was used. Compound-Target and Target-Pathway networks were analyzed via Cytoscape 3.40. Results : In total, 25 active compounds and their 62 non-redundant targets were selected through the TCMSP database and analysis platform. The target genes underwent gene ontology and pathway enrichment analysis. The gene list applied to the gene ontology analysis revealed associations with various biological processes, including signal transduction, chemical synaptic transmission, G-protein-coupled receptor signaling pathways, response to xenobiotic stimulus, and response to drugs, among others. A total of eleven genes, including HSP90AB1, CALM1, F2, AR, PAKACA, PTGS2, NOS2, RXRA, ESR1, ESR2, and NCOA1, were found to be associated with biological pathways related to cancer metastasis. Furthermore, nineteen of the active compounds from Dichroae Radix were confirmed to interact with these genes. Conclusions : The results provide valuable insights into the mechanism of action and molecular targets of Dichroae Radix. Notably, Berberine, the main active ingredient of Dichroae Radix, plays a significant role in degrading AR proteins in advanced prostate cancer. Further studies and validations can provide crucial data to advance cancer metastasis prevention and treatment strategies.

Chloride and lactate as prognostic indicators of calf diarrhea from eighty-nine cases

  • Gencay Ekinci;Emre Tufekci;Youssouf Cisse;Ilknur Karaca Bekdik;Ali Cesur Onmaz;Oznur Aslan;Vehbi Gunes;Mehmet Citil;Ihsan Keles
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.38.1-38.16
    • /
    • 2024
  • Importance: Deaths due to neonatal calf diarrhea are still one of the most critical problems of cattle breeding worldwide. Determining the parameters that can predict diarrhea-related deaths in calves is especially important in terms of prognosis and treatment strategies for the disease. Objective: The primary purpose of this study was to determine mortality rates and durations, survival status, and predictive prognosis parameters based on vital signs, hematology, and blood gas analyses in neonatal diarrheic calves. Methods: The hospital automation system retrospectively obtained data from 89 neonatal diarrheic calves. Results: It was found that 42.7% (38/89) of the calves brought with the complaint of diarrhea died during hospitalization or after discharge. Short-term and long-term fatalities were a median of 9.25 hours and a median of 51.50 hours, respectively. When the data obtained from this study is evaluated, body temperature (℃), pH, base excess (mmol/L), and sodium bicarbonate (mmol/L) parameters were found to be lower, and hemoglobin (g/dL), hematocrit (%), lactate (mmol/L), chloride (mmol/L), sodium (mmol/L) and anion gap (mmol/L) parameters were found to be higher in dead calves compared to survivors. Accordingly, hypothermia, metabolic acidosis, and dehydration findings were seen as clinical conditions that should be considered. Logistic regression analysis showed that lactate (odds ratio, 1.429) and CI- (odds ratio, 1.232) concentration were significant risk factors associated with death in calves with diarrhea. Conclusions and Relevance: According to the findings obtained from this study, the determination of lactate and Cl- levels can be used as an adjunctive supplementary test in distinguishing calves with diarrhea with a good prognosis.

Network Pharmacology-based Prediction of Efficacy and Mechanism of Yunpye-hwan Acting on COPD (네트워크 약리학을 이용한 윤폐환(潤肺丸)의 COPD 치료 효능 및 작용기전 연구)

  • Minju Kim;Aram Yang;Bitna Kweon;Dong-Uk Kim;Gi-Sang Bae
    • The Korea Journal of Herbology
    • /
    • v.39 no.3
    • /
    • pp.37-47
    • /
    • 2024
  • Objectives : Because predicting the potential efficacy and mechanisms of Korean medicines is challenging due to their high complexity, employing an approach based on network pharmacology could be effective. In this study, network pharmacological analysis was utilized to anticipate the effects of YunPye-Hwan (YPH) in treating Chronic obstructive pulmonary disease (COPD). Methods : Compounds and their related target genes of YPH were gathered from the TCMSP and PubChem databases. These target genes of YPH were subsequently compared with gene sets associated with COPD to assess correlation. Next, core genes were identified through a two-step screening process, and finally, functional enrichment analysis of these core genes was conducted using both Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. Results : A total of 15 compounds and 437 target genes were gathered, resulting in a network comprising 473 nodes and 14,137 edges. Among them, 276 genes overlapped with gene sets associated with COPD, indicating a significant correlation between YPH and COPD. Functional enrichment analysis of the 18 core genes revealed biological processes and pathways such as "miRNA Transcription," "Nucleic Acid-Templated Transcription," "DNA-binding Transcription Factor Activity," "MAPK signaling pathway," and "TNF signaling pathway" were implicated. Conclusion : YPH exhibited significant relevance to COPD by modulating cell proliferation, differentiation, inflammation, and cell death pathways. This study could serve as a foundational framework for further research investigating the potential use of YPH in the treatment of COPD.