• Title/Summary/Keyword: treatment of wastewater

Search Result 3,317, Processing Time 0.024 seconds

Effect of graphene oxide on polyvinyl alcohol membrane for textile wastewater treatment

  • Zahoor, Awan;Naqvi, Asad A.;Butt, Faaz A.;Zaidi, Ghazanfar R.;Younus, Muhammad
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.121-128
    • /
    • 2022
  • A tremendous amount of energy resources is being wasted in cleaning wastewater to save the environment across the globe. Several different procedures are commercially available to process wastewater. In this work, membrane filtration technique is used to treat the textile wastewater because of its cost effectiveness and low environmental impacts. Mixed Matrix Membrane (MMM) consist of Polyvinyl Alcohol (PVA) in which Graphene Oxide (GO) was added as a filler material. Five different membranes by varying the quantity of GO were prepared. The prepared membrane has been characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR) and Water Contact Angle (WCA). The prepared membranes have been utilized to treat textile wastewater. The synthesized membranes are used for the elimination of total dissolve solids (TDS), total suspended solids (TSS), Methylene blue (MB) dye and copper metallic ions from textile wastewater. It is concluded that amount of GO has direct correlation with the quality of wastewater treatment. The maximum removal of TDS, TSS, MB and copper ions are found to be 7.42, 23.73, 50.53 and 64.5% respectively and are achieved by 0.02 wt% PVA-GO membrane.

A Study of Advanced Oxidation Process for Reuse of Industrial Wastewater (산업폐수 재이용을 위한 고급산화공정 시스템 연구)

  • Kim, Sung-Joon;Jin, Ming-Ji;Won, Chan-Hee;Hwang, Jeong-Seok;Lee, Gil-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.580-584
    • /
    • 2010
  • As water becomes more scarce around the world the reuse of treated wastewater is being recenlty considered as indispensible trend we need to follow. Especially, industrial area consuming large amount of water has been encouraged to reuse the treated wastewater to secure sufficient water for the production of merchandise. In this study, a study of advanced oxidation process for treatment of industrial wastewater. The treatment performance of UV and ozoznation and five types advanced oxidation processes such as UV/AC, UV/Catalyst, $O_3$/Catalyst, UV/$O_3$/Catalyst was experimentally investigated for reuse of industrial wastewater. The removal efficiency of $COD_{Cr}$, color were relatively evaluated in each treatment unit simulated outflow water of wastewater treatment area. UV/$O_3$/Catalyst process showed the highest $COD_{Cr}$ remaval and color remaval among proposed oxidation process.

Eveluation of Comparable Removal Efficiency of Organics and Color for the Dyeing Wastewater by Fenton Oxidation and Ozonation (펜톤산화와 오존산화 조합에 따른 염색폐수의 유기물질 및 색도 처리효율 비교 평가에 관한 연구)

  • Kim, Sun Hee;Lee, Sang Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.778-784
    • /
    • 2004
  • Dyeing wastewater contains recalcitrant organics which can not be easily treated by conventional biological treatment. Therefore it has to be treated by other advanced oxidation process in order to remove COD and Color more efficiently. Fenton oxidation process is one of the most commonly applied processes in removal of COD and color for the dyeing wastewater. However it increase the treatment cost and the production of sludge by the use of the excessive chemical reagent. Ozonation is not suitable in Single treatment process because it is not effective in organics removal compared with Color removal. The purpose of this research in order to evaluate the comparable removal efficiency of COD and color by the combination of advanced oxidation processes for the dyeing wastewater. The sequential treatment processes of Fenton process and ozonation was more effective to remove organics and color than ozonation and Fenton process. The result of Fenton process for the pretreatment presented as the 81% removal of organics whereas ozonation process for the pretreatent presented as the 22.1% removal of organics. The removal of colour was higher as 81.3% for the ozonation as the pretreatment than 77.7% for the Fenton process as the pretreatment.

Electrolytic Treatment of Heavy Metallic ion Wastewater by BPBE Cell (BPBE Cell에 의한 중금속함유폐수처리)

  • 장철현;박재주;박승조;김수생
    • Environmental Analysis Health and Toxicology
    • /
    • v.4 no.3_4
    • /
    • pp.29-59
    • /
    • 1989
  • For the purpose of electrolytic treatment of wastewater containing various heavy metals, the BPBE Cell of batch and continuous type was considered and experimented. Some results from this study were summarized as follows: 1. When the artificial wastewater containing 500 mg/l of the concentration of various heavy metallic ion was electrolyzed in BPBE Cell of batch type, the removal efficicency was over 95% in cadmiun (II), lead (II), chromium (Ⅵ) and over 85% in copper (II), chromium (III). 2, As granular activated carbon packed in BPBE Cell, coconut shell was superior to lignite and the removal efficiency was the highest when the activated carbon was 4/6 mesh, the voltage was 20V. 3. When the heavy metallic ion in wastewater was electrolyzed in BPBE Cell of continuous type, about 1,000mg of heavy metal per 1kg of coconut sell could be removed. 4. The treatment method of heavy metallic ion in wastewater by BPBE Cell cost less than in the former chemical treatment method and the coconut shell packed in BPBE Cell could be regenerated by chemical method.

  • PDF

A Study on the Semiconductor Wastewater Treatment and Recycling by VSEP system (진동막분리장치에 의한 반도체폐수처리와 재이용에 관한 연구)

  • Kang Gyung-Hwan
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.335-343
    • /
    • 2005
  • The objective of this research is to evaluate a feasibility of wastewater reuse by membrane treatment with vibrating membrane separation equipment. Molecular weight of compounds in wastewater, permeability of membrane and retentate characterization after membrane filtration were investigated in order to determine appropriate membrane pore size and materials for wastewater treatment. Selected membrane was evaluated with vibration membrane separation equipment to optimize operating conditions. The following conclusion are drawn. 1. We got as following test results after the distribution of particles in the semiconductor wastewater, are made up of $1\~20{\mu}m$. Si, gold and Al in turn are contained in semiconductor wastewater. 2. Recovery rate is changeless under increasing recovery rate in operation. Though a value can be if pressure can be changed, the highest value of permeate rate is presented in 150 psi. 3. The AS-100(polysulpone) was selected as the most appropriate membranes for the treatment of semi-conductor wastewater to VSEP system. The fouling almost did not occur during this experiments. The analyses of treated water with VSEP system showed conductivity: 0.059,us/cm, TDS: 40mg/l, COD: 20mg/l, SS : 5mg/l, n-Hexane: 8.3mg/l. Comparing previous systems, operating expenses is decreased by more $50\%$.

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

Performance evaluation of nitrate removal in high TDS wet scrubber wastewater by ion exchange resin with dissolved air flotation (DAF) process

  • Kim, Bongchul;Yeo, Inseol;Park, Chan-gyu
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • The regulations of the International Maritime Organization (IMO) have been steadily strengthened in ship emissions. Accordingly, there is a growing need for development of related technologies for the removal of contaminants that may occur during the treatment of SOx and NOx using a wet scrubber. However, this system also leads to wastewater production when the exhaust gas is scrubbed. In this research, we evaluated the performance of an ion selective resin process in accordance with scrubber wastewater discharge regulations, specifically nitrate discharge, by the IMO. Accelerated real and synthetic wastewater of wet scrubbers, contained high amounts of TDS with high nitrate, is used as feed water in lab scale systems. Furthermore, a pilot scale dissolved air flotation (DAF) using microbubble generator with ion exchange resin process was combined and developed in order to apply for the treatment of wet scrubber wastewater. The results of the present study revealed that operating conditions, such as resin property, bed volume (BV), and inlet wastewater flow rate, significantly affect the removal performance. Finally, through a pilot test, DAF with ion exchange resin process showed a noticeable improvement of the nitrate removal rate compared to the single DAF process.

Application of Advanced Treatment Process for Nitrogen Compounds Removal of Industrial Waste-water (산업폐수 중의 질소 성분의 제거를 위한 고도처리 공정의 응용)

  • Bhang, Sung-Hun;Lim, Eun-Tae;Jeong, Gwi-Taek;Park, Jae-Hee;Park, Seok-Hwan;Kim, Seong-Jun;Park, Don-Hee
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.541-545
    • /
    • 2008
  • This paper was studied to research regarding the removal of contained nitrogen in industrial wastewater which uses the A2O4 advanced water treatment process. The field researches of two companies' wastewater occurred in each wastewater treatment site to apply the A2O4 process system, it was observed them for 20 days. As a result of the A2O4 system advanced wastewater process which applied an altitude control process obtained $10{\sim}76\;mg/L$, and 20 mg/L total nitrogen compound concentration in the two wastewater plants. In conclusion, it applied the A2O4 system in the two companies' wastewater system.

Empirical evaluation for design parameters and operating characteristics of the integrated sedimentation and dissolved air flotation (SeDAF) process at the pilot-scale plant (파일럿 플랜트 규모에서 일체형 침전부상공정 (SeDAF)의 설계인자 및 운전특성에 대한 실증적 평가)

  • Jang, Yeoju;Jung, Jinhong;Lim, Hyunman;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Eutrophication and algal blooms can lead to increase of taste and odor compounds and health problems by cyanobacterial toxins. To cope with these eco-social issues, Ministry of Environment in Korea has been reinforcing the effluent standards of wastewater treatment facilities. As a result, various advanced phosphorus removal processes have been adopted in each wastewater treatment plant nation-widely. However, a lot of existing advanced wastewater treatment processes have been facing the problems of expensive cost in operation and excessive sludge production caused by high dosage of coagulant. In this study, the sedimentation and dissolved air flotation (SeDAF) process integrated with sedimentation and flotation has been developed for enhanced phosphorus removal in wastewater treatment facilities. Design and operating parameters of the SeDAF process with the capacity of 100 ㎥/d were determined, and a demonstration plant has been installed and operated at I wastewater treatment facility (located in Gyeonggi-do) for the verification of field applicability. Several empirical evaluations for the SeDAF process were performed at demonstration-plant scale, and the results showed clearly that T-P and turbidity values of treated water were to satisfy the highest effluent standards below 0.2 mg/L and 2.0 NTU stably for all of operation cases.

A Study on Advanced Treatment of Sewage Wastewater by Eichhornia crassipes (부레옥잠을 이용한 생활하수의 고도처리에 관한 연구( I ))

  • Chung, Soon-Hyung
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.69-77
    • /
    • 2003
  • The present time, water hyacinth(Eichhornia crassipes) was widely used for a purification of a polluted lake, livestock wastewater and sewage wastewater treatment. This study was conducted to evaluate the propriety of sewage wastewater treatment by water hyacinth(Eichhornia crassipes). On the study of optimal cultivation density, 3 kg/m$^2$ was selected for the most suitable initial cultivation density through the BOD, T-N and T-removal efficiency. In experiment of purification capacity, hyacinth(Eichhornia crassipes) removed the 267.2 mg BOD/kg · day, 72 mg T-N/kg · day and 8.6 mg T-P/kg · day at 30 operation days respectively. The result showed that hyacinth(Eichhornia crassipes) could be used for recovery of eutrophic lake effectively. In the test of optimal HRT(hydraulic retention time), 9 days was selected with the suitable HRT, and BOD, T-N and T-P were removed with 75%, T-N 88% and T-P 97% respectively.