• Title/Summary/Keyword: treated waste water

Search Result 232, Processing Time 0.021 seconds

Decomposition of Fe-EDTA in Nuclear Waste Water by using Underwater discharge Plasma

  • Kim, Jin-Kil;Lee, Han-Yong;Kang, Duk-Won;Uhm, Han-Sup
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.336-336
    • /
    • 2004
  • EDTA contained in decontamination wastes can cause complexation of radioactive captions resulting from its various treatment process such as chemical precipitation, and ion exchange etc. It might also import for elevated teachability and higher mobility of cationic contaminants from conditioned wastes such as waste immobilized in cement or other matrices. Therefore, various cheated or unchlelated EDTAS must be treated to environmentally safe materials.(omitted)

  • PDF

Development of Polymeric Adsorbents for the Treatment of Colored Waste Waters and Re-use of the Treated Water (II) - Quaternary Aminized Cellulosic Adsorbent - (유색폐수처리를 위한 고분자 흡착제의 개발과 처리수의 사용(II) - 4급 아민화 셀룰로오스 흡착제 -)

  • Soo-Min Park;Woo-Kyung Sung
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.131-135
    • /
    • 1992
  • Quaternary aminized cellulosic adsorbents (C $A_{QA}$ ) which exhibit adsorption capacities for anionic dyestuffs for the treatment of colored waste water and re-use of the treated water were studied. The isotherms and thermodynamic parameters of C.I. Acid Orange 7, solution considered as a model of negatively charged coloring matters for C $A_{QA}$ , were determined. Batch method and flow method were employed to determine decoloring capacity of cellulosic adsorbents for Orange 7. The cellulosic adsorbents exhibited much better adsorption capacity than activated carbon. Furthermore the exhausted cellulosic adsorbents could be readily regenerated by washing with dilute sodium hydroxide.

  • PDF

Evaluation of the Water Purification Efficiency of Waste LCD Glass Media by Using Foaming Technology (발포기술을 이용한 폐 LCD유리 여재의 수질정화능력 평가)

  • Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.369-376
    • /
    • 2010
  • The purpose of this study is to reprocess Waste-LCD(Liquid Crystal Display), to widely increase specific surface-area by foaming agent in the process of reprocessing and to use as a substrate of water treatment which is increased the ability of biological treatment, as well as to control non-point source pollutants produced by surface run off during rainfall with using this substrate, and to improve water quality of public watershed as developing substrate for water treatment to be able to purify second treated water which is exhausted at the wastewater treatment plant. The average removal efficiency of Waste-LCD that using the foaming technology was SS 71.2%, BOD 55.7%, COD 58.4%, T-N 29.5% and T-P was 50.3%. Almost Media, early stage showed low removal efficiency of SS and BOD. However, it became high when the microorganism adhered the Media. The variation of SS removal efficiency was high by inflow concentration of SS. The reason for the Media 4 showed high SS removal efficiency is that it has wide specific surface-area, and also it has a pore. All in all, it shows floating matter treatment ability not only inside but it also works outside of the substrate.

Methods for the Reduction of Consumption and Contamination of Water in a Newsprint Mill by Using Simulation Model and WRDF (전산모사기법과 WRDF를 활용한 ONP 재활용 공정의 용수 및 오염부하 절감 방안에 관한 연구)

  • 이영애;류정용;성용주;김용환;송재광;송봉근;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.54-59
    • /
    • 2004
  • The methods for the minimization of fresh water consumption, waste water generation and water contamination have been greatly investigated and developed for last ten years. Recently, the rising cost of waste water treatment and the more strict environmental regulation lead to the higher demand of more efficient and systematic methods for process water management. The water reuse technology, which not only reduce the process water needs but also minimize waste water generation within the process, could be one of most efficient way for current demand. In this study, the practical way for reduction of water pollution and optimal reuse or recycle of process water in a newsprint mill was investigated by using a simulation model. The result of computer simulation showed that the COD level of approach system could be reduced by 50% after the stock concentration at the 2nd disc filter was increased upto 30%. The application of WRDF(Wrinkled Rotary Drum Filter) to the newsprint mill was carried out with pilot scale. The process water treated by WRDF had enough cleanliness to substitute the forming fabric shower water with the PDF water, which could result in the 30% reduction in fresh water consumption.

Recovery of Zine sulfate from zine sulfate waste water contain organic compound (유기물이 포함된 황산아연폐수로부터 황산아연의 회수)

  • Yoon, Guk-Joung;Lee, Tack-Hyuck
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.33-40
    • /
    • 2004
  • The eliminating of organic compound is essential process of the recovery of zinc sulfate from zinc sulfate waste water contained organic compound. The ozone oxidation and adsorption treatment is good for eliminating of organic compound in waste water. The zinc oxide treated an excess of sulfuric acid for zinc sulfate. We got zinc sulfate 740g from water 1kg.

  • PDF

The Neutralization Treatment of Waste Mortar and Recycled Aggregate by Using the scCO2-Water-Aggregate Reaction (초임계이산화탄소-물-골재 반응을 이용한 폐모르타르와 순환골재의 중성화 처리)

  • Kim, Taehyoung;Lee, Jinkyun;Chung, Chul-woo;Kim, Jihyun;Lee, Minhee;Kim, Seon-ok
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.359-370
    • /
    • 2018
  • The batch and column experiments were performed to overcome the limitation of the neutralization process using the $scCO_2$-water-recycled aggregate, reducing its treatment time to 3 hour. The waste cement mortar and two kinds of recycled aggregate were used for the experiment. In the extraction batch experiment, three different types of waste mortar were reacted with water and $scCO_2$ for 1 ~ 24 hour and the pH of extracted solution from the treated waste mortar was measured to determine the minimum reaction time maintaining below 9.8 of pH. The continuous column experiment was also performed to identify the pH reduction effect of the neutralization process for the massive recycled aggregate, considering the non-equilibrium reaction in the field. Thirty five gram of waste mortar was mixed with 70 mL of distilled water in a high pressurized stainless steel cell at 100 bar and $50^{\circ}C$ for 1 ~ 24 hour as the neutralization process. The dried waste mortar was mixed with water at 150 rpm for 10 min. and the pH of water was measured for 15 days. The XRD and TG/DTA analyses for the waste mortar before and after the reaction were performed to identify the mineralogical change during the neutralization process. The acryl column (16 cm in diameter, 1 m in length) was packed with 3 hour treated (or untreated) recycled aggregate and 220 liter of distilled water was flushed down into the column. The pH and $Ca^{2+}$ concentration of the effluent from the column were measured at the certain time interval. The pH of extracted water from 3 hour treated waste mortar (10 ~ 13 mm in diameter) maintained below 9.8 (the legal limit). From XRD and TG/DTA analyses, the amount of portlandite in the waste mortar decreased after the neutralization process but the calcite was created as the secondary mineral. From the column experiment, the pH of the effluent from the column packed with 3 hour treated recycled aggregate kept below 9.8 regardless of their sizes, identifying that the recycled aggregate with 3 hour $scCO_2$ treatment can be reused in real construction sites.

Treatment of Concrete Wastewater in Repair of Bridge Deck (교량 바닥판 보수공사에서 발생하는 콘크리트 폐수처리 방안)

  • Lee, Bong-Hak;Choi, Pan-Gil;Kim, Jung-Ki
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.125-132
    • /
    • 2008
  • As of 2003, construction waste has been produced at the level of 130,614.8 tons/day, in which the amount of waste concrete was 92,639.1 tons/day and accounted for about 66.4% of the amount of construction waste. Waste concrete is mainly produced in construction work and civil engineering work. Especially, road surface crushing method using a large amount of water requires thorough management of concrete wastewater. The aim of this study was to analyze water pollution due to concrete wastewater generated in repair of bridge deck using road surface crushing equipment and to suggest reasonable countermeasures for solve the problem. In this study, it was surveyed current conditions of produced concrete wastewater in bridge deck repair, analyzed physical features of concrete wastewater, expected effects of water pollution on inflow rivers if it is not treated, established treatment plan of water pollution by categories, and calculated capacity of each treatment process and required amount of necessary chemicals. As a result of sampling wastewater generated in field sites and testing it at a lab scale, it was revealed that the original wastewater was produced in removing concrete from bridge deck slabs using surface crushing equipment whose pH was 12.53, CODMn was 12.910mg/L, SS was 547.0mg/L, and other heavy metals were included in extremely small quantities.

  • PDF

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

The Adsorption Properties of Heavy Metal Ions on to Cotton Fabrics Treated with Reactive Anionic Agent (반응형 음이온화제 처리 면직물에 대한 중금속 이온의 흡착특성)

  • Kim Mi-Kyung;Yoon Seok-Han;Kim Tae-Kyeong;Lim Yong-Jin
    • Textile Coloration and Finishing
    • /
    • v.17 no.1
    • /
    • pp.20-29
    • /
    • 2005
  • Cotton fabric was treated with a reactive anionic agent in order to have anionic sites(-S03-) on it, which made it possible for the fabric to adsorb various cationic materials. In this study, the adsorptivity of various heavy metal ions such as Pb(II), Cd(II), Cr(III), Co(II), Cu(II), Ni (II) and Cr(VI) on the cotton fabrics treated with anionic agent was examined at the various conditions; concentrations of heavy metal ions, pHs of solution, reaction time and temperature. As a result, the adsorptivity of the heavy metal ions on the cotton fabrics treated with the anionic agent was highly increased comparing to that of untreated cotton fabrics. The order of the adsorptivity was as follows: $Pb(II)>Cd(II)>Cu(II)\geqNi(II)\geqCo(II)>Cr(III)\ggCr(VI)$. The adsorption amounts of most heavy metal ions were increased in weak alkaline conditions and were reached to an adsorption equilibrium within 10 ~ 30 minutes. The maximum adsorption ratios of Pb(II) and Cd(II) were respectively 99% and 80% of the initial concentration of heavy metal ions. Therefore the anionized cotton fabrics seem to be utilized as an adsorption fabrics for the removal of heavy metal ions in the waste water.