• Title/Summary/Keyword: treated sewage water

Search Result 152, Processing Time 0.031 seconds

Improvement on Sewerage Effluent Standard of Public Sewerage Treatment Plants (공공하수처리시설 수질기준 선진화 방안)

  • Yu, Soon-Ju;Park, Sang-Min;Kwon, Oh-Sang;Park, Su-Jeong;Yeom, Ick-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.276-287
    • /
    • 2013
  • Domestic sewage contains increasingly more pharmaceuticals and personal care products (PPCPs), due to rising use of medicines, health supplement food and daily necessities. And various types of industrial wastewater from pollution sources in treatment areas could flow into the public sewerage treatment plants (PSTPs) in metropolitan areas. The conventional PSTPs are designed to treat suspended solids, biodegradable organics, nitrogen and phosphorous from residential and industrial areas and public facilities. However, toxic, conventional, and non-coventional pollutants from non-domestic sources that discharge into sewer system as well as domestic source with various chemicals could not be treated in the conventional PSTPs and discharged untreated to public basin. In this paper we aim to consider the establishment system of effluent standard of PSTPs in comparison with water quality standard of water environment and wastewater discharge regulation. And also we suggest the necessity of regulations on the pretreatment of industrial wastewater as part of efforts to improve water quality in sewerage systems and to protect public basin.

Experimenting biochemical oxygen demand decay rates of Malaysian river water in a laboratory flume

  • Nuruzzaman, Md.;Al-Mamun, Abdullah;Salleh, Md. Noor Bin
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.99-106
    • /
    • 2018
  • Lack of information on the Biochemical Oxygen Demand (BOD) decay rates of river water under the tropical environment has triggered this study with an aim to fill the gap. Raw sewage, treated sewage, river water and tap water were mixed in different proportions to represent river water receiving varying amounts and types of wastewater and fed in a laboratory flume in batch mode. Water samples were recirculated in the flume for 30 h and BOD and Carbonaceous BOD (CBOD) concentrations were measured at least six times. Decay rates were obtained by fitting the measured data in the first order kinetic equation. After conducting 12 experiments, the range of BOD and CBOD decay rates were found to be 0.191 to 0.92 per day and 0.107 to 0.875 per day, respectively. Median decay rates were 0.344 and 0.258 per day for BOD and CBOD, respectively, which are slightly higher than the reported values in literatures. A relationship between CBOD decay rate and BOD decay rate is proposed as $k_{CBOD}=0.8642_{k_{BOD}}-0.0349$ where, $k_{CBOD}$ is CBOD decay rate and $k_{BOD}$ is BOD decay rate. The equation can be useful to extrapolate either of the decay rates when any of the rates is unknown.

Current Condition and Prospect of On-Site Domestic Wastewater Treatment Technologies (합병정화조 기술현황 및 전망)

  • 임연택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.95-112
    • /
    • 1998
  • Water quality in the public water course has been polluted more seriously than ever before due to the increase of the number and aremount of pollution sources such as domestic and industrial wastewater. For water quality conservation, the Korean government has been trying to construct sewage treatment facilities continually, of which treatment capacity reached to 11,452,400m$^{3}$/day in 1996. Night soil treatment facilites of m nationwide have the treatment capacity of 24,038m$^{3}$/day. But water quality has not been improved because the sewer systems were insufficient and the treatment efficiencies of sewage were not high, enough. For renovation of water quality, miscellaneous domestic wastewater must be treated because 27g BOD/day out of total 40g BOD/person-day come from miscellaneous wastewater, comparing to 13g BOD/day from night soil. However, sole treatment purifier treat only night soil from the flushing toilet. Therefore, it may be desirable to treat the miscellaneous domestic wastewater and the night soil from flushing toilet together by joint treatment purifier system as on-site domestic wastewater treatment technology. In Korea, the joint treatment purifier system, introduced in 1997, have the benefit as follows; i) good water poiluion control effect, ii ) good effect on river water flow, iii) water pollution control with sewage treatment facility, and iv) rapid pollution control effect, etc. In order to achieve a good effect as stated before, i ) strengthening effluent guideline including BOD, nitrogen and phosphorus, ii ) specializing operation to maintain high performance, and iii) supporting its construction and maintenance costs by the governmental level may be necessary: In addition, automation system of joint treatment purifier, technology for its package and compactness, and a new bio-media bio-filter with higher capacity should be further developed in agreement with a more stringent effluent guideline.

  • PDF

Study on Mutagenicity of the Water from Chung-gye and Joong-rang Streams (청계천 및 중랑천의 돌연변이원성 조사)

  • Kim Young-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.2 no.2 s.2
    • /
    • pp.39-47
    • /
    • 1987
  • This paper is examine the mutagenic activities of the water samples from Chun-gye and Joong-rang streams in March, 1968. For this examination, adsorbed of mutagens by 'blue cotton' and Ames method using Salmonella typhimurium was used. The results were as follow; 1. The average revertant colonies of the Chun-gye stream on TA 98 was 120/plate and TA 100 was 267/plate. 2. The average revertant colonies of the Joong-rang stream on TA 98 was l06/plate and TA 100 was 407/plate. 3. Chun-gye and Joong-range streams showed about the same mutagenic activities. 4. The mutagenic activity of treated sewage was higher than of untreated sewage. It is considered that, among the influent materials with Zimpro oxidation fluid, human feces and urine increased mutagenic activities.

  • PDF

The Characteristics of Water Quality and the Estimation of Pollutant Loadings from the Flowing Streams in Cheju Island (제주도내 유수하천에 대한 수질특성 및 오염부하량 산정)

  • 조은일;오윤근
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.845-851
    • /
    • 1998
  • In order to manage the water quality from the flowing streams in Cheju Island, the characteristics of water quality was investigated from August, 1996 to May, 1997 and the pollutant loadings for future were estimated from the watershed at each stream. Comparing the mean concentrations of each water quality with the criterion of water quality in river, it was under I class except for Changgo Stream, for DO, under I class at the whole station for SS and under II class for BOD. As the pollutant loadings at each stream in 2020 is compared with those in 1996, the estimated results are as follows : 1) for BOD, 59% at Donghong Stream, 24% at Yeonoe Stream, 44% at Ohngpo Stream and 57% at Changgo Stream. 2) for T-N, 91% at Donghong Stream, 76% at Yeonoe Stream, 63% at Ohngpo Stream and 89% at Changgo Stream. 3) for T-P, 69% at Donghong Stream, 42% at Yeonoe Stream, 45% at Ohngpo Stream and 73% at Changgo Stream. The point source loadings discharged through combined sewer could be treated at sewage treatment plant. However, the expected slow decreasing rate of BOD, T-N, and T-P loadings is due to the part of untreated nonpoint source loadings. Nonpoint source loading overflow typically occurs when the flow of stormwater combined with sewage exceeds the capacity of the interceptor sewers. Since most of the sewers used in Cheju Island are the combined sewers, the combined overflow sewage is bypassed into the receiving water area after a rainstorm. Therefore, a means to control nonpoint source loadings should be considered for the river and marine water quality management.

  • PDF

Water Quality Change Characteristics of Treated Water in Distribution System of Water Treatment Plant of Jeiu City (제주시 정수장 처리수의 급수과정별 수질변화 특성)

  • Han, Kyung-Yong;Lee, Min-Gyu;Chung, Ho-Jin;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this work is to investigate the water quality change characteristics of treated water in water distribution systems of Water Treatment Plants (WTPs) of Jeju City. For this, the raw water, treated water and tap water that did not pass (named as not pass-tap water) and passed through the water storage tank (named as pass-tap water) were sampled and analyzed monthly from September 2001 to August 2002, for four (W, S, B and O) WTPs except for D WTP (where treated water is not supplied continuously) among WTPs of Jeju City. The concentrations of $NO_3^-$ and $Cl^-$ of treated water in distribution systems changed little, but changed seasonally, which is considered to be based on the seasonal variation of the quality of raw water. The pH of treated water changed little in distribution systems for S WTP, but for the other WTPs, the pH of not pass-tap water was similar to that of treated water and the pH of pass-tap water was higher than that of treated water. The turbidity of treated water in distribution systems changed little except for W2 of W WTP and S4 and S5 of S WTP, where it was higher than that of each treated water. The residual chlorine concentrations between treated water and not pass-tap water changed little, but those between treated water and pass-tap water changed greatly, based on the its long residence time in water storage tank and so its reaction with organic matter, etc or its evaporation. The concentrations of TTHMs (total trihalomethanes) and $CHCl_3$ that induce cancers in water distribution systems of these WTPs, were much lower than their water quality criteria and those in other cities. The concentrations of TTHMs of treated water and not pass-tap water were similar, but concentrations of pass-tap water were 1.5 to 2.0 times higher than those of treated water and not pass-tap water, due to the reaction of residual chlorine and organic matter, etc, with the result of long residence time in water storage tank.

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Removal of Phosphorus by Blast Furnace Slag as a Filter Medium in a Self-Purifying Swage Treatment System (제강 슬래그를 여재로 사용한 자연정화 하수처리장의 인(P)제거 효과)

  • Chung, Dong Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.68-74
    • /
    • 2004
  • A blast furnace slag(BFS) has been used as a filter medium for the treatment of domestic waste waters during the period of 9-month. More than 90% of phosphorus was removed while the hardness of the treated water increased by 5 times and the pH was significantly raised from 6.8 to 10.8. The high hardness and pH of the treated water indicated dissolution of BSF by the sewage. The experimental results suggest that BFS could be utilized for the removal of phosphorus in the waste water treatment plant using aquatic plants and gravels.

Pulsed Power System for Leachate Treatment Application (침출수 처리 응용 펄스전원 시스템)

  • Jang, S.R.;Ahn, S.H.;Ryoo, H.J.;Rim, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.246-247
    • /
    • 2010
  • This paper deals with the water treatment of the leachate from sewage filled ground by a pulsed power technology. Leachate from sewage filled ground should be treated below regulation level of COD in order to prevent environmental pollution and usually treated by a chemical method. Among the pollutants mixed in the leachate, chemical compounds of benzene series are known to be difficult to break down, and need to use high cost treat methods. The treatment of the benzene compounds by high power pulsed power supply was studied. For the high-rate, cost-effective treatment of leachate, pulsed power supply should have high repetition rates and require switching devices of long lifetime. In order to meet the demands of the above condition, pulsed power generator based on semiconductor switches using IGBTs as primary switches were developed. The experimental results verified that benzene compounds can be treated effectively by high voltage electric pulses, and this fact indicates that the treatment method by pulsed power source is a promising substitute.

  • PDF