• Title/Summary/Keyword: treadmill running training

Search Result 54, Processing Time 0.023 seconds

Effects of Running Training on Superoxide Production in Spontaneously Hypertensive Rats (트레드밀달리기 훈련이 자연발생고혈압쥐의 Superoxide 생성에 미치는 효과)

  • Jang, Hak-Yeong;Kim, Won-Sik;Jang, Seung-Jin;Choe, Hyeong-Min
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.97-100
    • /
    • 2009
  • The purpose of this study was to examine effects of treadmill running training on superoxide product of spontaneously hypertensive rats. 20 males aged five week old rats were used for the experiments. They were randomly selected into experimental group (10 rats) and control group (10 rats) after being housed in laboratory for two weeks. The rats of experimental group performed treadmill exercise from 15 minutes for the first time to 35 minutes for the last one in order to familiar with experimental protocol ($VO_{2}max\;65{\sim}70%$, 0.9km/h, 5 times/week, 35 minutes/session). They began to perform treadmill running at the age of eight weeks for eight weeks. Superoxide production and NADPH oxidase activities were measured on the aortal from end of experiment. All statistical analyses and description methods were computed by SPSS Version 10.0. Differences in the values between experimental group and control group were calculated using t-tests. The results of this study were: there wewe no significant differences in superoxide production, NADPH oxidase-drivened superoxide activity, NADPH oxidase activity between two groups (p>.05). Spontaneously hypertensive rats of experimental group were characterized by higher superoxide production and lower NADPH oxidase-drivened superoxide activity and NADPH oxidase activity in comparison with the control group. One possible explanation of this finding was that NADPH oxidase activity of experimental group was lower than the control group. It can be concluded that treadmill running for eight weeks was associated positively with superoxide product of spontaneously hypertensive rats.

  • PDF

Effect of Tower Climbing Exercise, Aerobic Exercise & Alpha Lipoic Acid Administration on Bone Metabolism Factor in Ovariectomized Rats (자율적 등반운동과 유산소성 운동시 alpha lipoic acid 처치가 난소절제 흰 쥐의 골 대사 변인에 미치는 영향)

  • Kim, Sanghyun;Kim, Kijin
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • The purpose of this study was to investigate the change of bone metabolic parameters between climbing exercise training and treadmill running training with alpha lipoic acid supplementation in ovariectomized rats. Fifty-six Sparague-Dawley, 8 weeks of age, were assigned into nine groups: normal control at pre-test (Pre-NC), normal control at post-test (NC), sham-sedentary (SS), ovariectomized-control (OVX-Con), ovariectomized-ALA inject (OVX-ALA), ovariectomized-climbing exercise (OVX-CE), ovariectomized-ALA inject+climbing exercise (OVX-ACE), ovariectomized-treadmill exercise (OVX-TE) and ovariectomized-ALA inject+treadmill exercise (OVX-ATE). The climbing exercise group voluntarily climbed the 200 cm tower to drinking water from the bottle set at the top of it. The treadmill exercise group was performed the 60 min treadmill running with grade 6-8%, and velocity 10-15 m/min. The frequency of exercise training was performed 6 days per wk in both training intervention. For the comparison of bone metabolic responses following to different training intervention, the strength, length and weight of femur, total bone density, bone mineral contents, deoxypyridioline, osteocalcin and parathyroid hormone, estradiol and lutenizing hormone were measured in this study. The body weight was higher in the OVX-Con, OVX-ALA and OVX-TE groups as compared to NC group. The total bone mineral density of OVX-ACE showed a higher value than SS, OVX-Con, OVX-ATE and OVX-TE. But urine and blood metabolic parameters showed no significance among groups. In conclusion, this study results suggested that climbing exercise training and alpha lipoic acid supplementation may an effective intervention for prevention of osteoporosis in ovriectomized rats.

The Effects of Treadmill Training on Neurotrophins and Immediately Early Protein in Obese Rats (트레드밀 트레이닝이 비만 쥐의 neurotrophins와 초기발현 단백질에 미치는 영향)

  • Woo, Jin-Hee;Shin, Ki-Ok;Yeo, Nam-Heoh;Park, So-Young;Kang, Sung-Hwun
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.985-991
    • /
    • 2011
  • The purpose of this study was to investigate the biological effect of obesity-induced oxidative damage on neurogenesis and early protein expression. Obesity was induced I thirty 4-week old male Sprague-Dawley rats through a high fat diet for 15 weeks. After one week of environmental adaptation, the rats were divided into 2 groups: high fat diet sedentary group (HDS, n=15) and high fat diet training group (HDT, n=15). Exercise training was performed 5 times a week for 8 weeks, with mild-intensity treadmill running for weeks 1-4 and moderate-intensity treadmill running for weeks 5-8. After the 8 week training period, we analyzed lipid profiles, serum 8-hydroxyguanosine (8-OHdG), liver tissue malondialdehyde (MDA) related to oxidative damage factors, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), c-fos, c-jun, and extracellular signal regulated kinase (Erk) in the hippocampus. The results of this study are as follows. There were differences between HDS and HDT in triglyceride (TG) and total cholesterol (TC) (p<0.05). In high density lipoprotein (HDL-c), the HDT was higher than HDS after treadmill training (p<0.05). In 8-OHdG, the HDT was lower than HDS after treadmill training (p<0.05). Genetic expressions of c-jun, BDNF and MDA in the HDT were higher than in the HDS after treadmill training in hippocampus (p<0.05). Therefore, we conclude that 8 weeks of treadmill training can improve imbalanced lipid profiles, reduce oxidative damage, and activate neurogenesis in obese rats.

Effect of Physical Training on Body Weight Gain and Physical Performance in Mice (흰생쥐에 있어서 성장기의 신체훈련이 신체발육 및 운동능력에 미치는 영향)

  • Paik, Kwang-Sae
    • The Korean Journal of Physiology
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 1977
  • The object of the present study is to examine the effect of physical training during early growth of life on body weight gain and physical performance. Early weaned (2 weeks after birth) male mice were divided into control and training group-and experimental period was divided into growing period (from 1st week to 6th weeks after weaning) and adult period (from 7th weeks to 9th weeks after weaning). Physical training was. given on a small animal treadmill with a speed of 34.3m/min and $19^{\circ}C$ slope and both groups of body weight gain and maximal running time on the treadmill were determined. The results obtained are summarized as follows; 1. Body weight gain was lesser in training group than control group and the difference was. statistically significant at 1, 2.5, 5.7 weeks of training period. 2. Maximal running time of training group was found to be longer than that of control group at 6th (p<0.01), 8th (p<0.001) and 9th weeks. (p<0.01). From the above results, it may be concluded that if physical training is started in early growth of life, there might be an improvement of physical performance.

  • PDF

The Effects of Treadmill Training on Spastic Cerebral Palsy Children's Gross Motor Functions (트레드밀 훈련이 경직성 양하지 마비 아동의 대동작 운동 기능에 미치는 영향)

  • Choi, Hyun Jin;Kim, Yoon Hwan
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.3
    • /
    • pp.23-30
    • /
    • 2012
  • The purpose of this study was to apply treadmill training through motor learning to cerebral palsy children and examine its effects on their Gross Motor Functions. The subjects of this study were 13 spastic diplegia children who had difficulty in independent gait, and GMFCS level III, IV. We performed treadmill gait training using the principle of weight bearing, based on 4times a week for 30 minutes before and after each session physical therapy we gave weight bearing treadmill training 5 to 10 minutes, during 7 weeks(April 9, 2012~May 26, 2012) fittingly for the children's gait characteristics. In order to test how the weight bearing treadmill training affects spastic diplegia children's gross motor functions, we measured body mobility with Gross Motor Function Measure (GMFM). These data were collected before and after the experiment and analyzed through comparison. Data collected from the 13 spastic diplegia children the results were as follows. For evaluating with regard to change in body mobility, significant difference was observed between before and after the experiment in measured gross motor functions, which were crawling, kneeling, standing, walking, jumping and running(p<0.05). According to the results of this study, when gait training through motor learning was applied to spastic cerebral palsy children, it made significant changes in their body mobility. Accordingly, for the effective application of gait training through motor learning to cerebral palsy children, it is considered necessary to make research from different angle on how such training affects children's mobility, activity of muscles in the lower limbs, and gait characteristics.

  • PDF

Cardio-pulmonary Adaptation to Physical Training (운동훈련(運動訓練)에 대(對)한 심폐기능(心肺機能)의 적응(適應)에 관(關)한 연구(硏究))

  • Cho, Kang-Ha
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.103-120
    • /
    • 1967
  • As pointed out by many previous investigators, the cardio-pulmonary system of well trained athletes is so adapted that they can perform a given physical exercise more efficiently as compared to non-trained persons. However, the time course of the development of these cardio-pulmonary adaptations has not been extensively studied in the past. Although the development of these training effects is undoubtedly related to the magnitude of an exercise load which is repeatedly given, it would be practical if one could maintain a good physical fitness with a minimal daily exercise. Hence, the present investigation was undertaken to study the time course of the development of cardio-pulmonary adaptations while a group of non-athletes was subjected to a daily 6 to 10 minutes running exercise for a period of 4 weeks. Six healthy male medical students (22 to 24 years old) were randomly selected as experimental subjects, and were equally divided into two groups (A and B). Both groups were subjected to the same daily running exercise (approximately 1,000 kg-m). 6 days a week for 4 weeks, but the rate of exercise was such that the group A ran on treadmill with 8.6% grade for 10 min daily at a speed of 127 m/min while the group B ran for 6 min at a speed of 200 m/min. In order to assess the effects of these physical trainings on the cardio-pulmonary system, the minute volume, the $O_2$ consumption, the $CO_2$ output and the heart rate were determined weekly while the subject was engaged in a given running exercise on treadmill (8.6% grade and 127 m/min) for a period of 5 min. In addition, the arterial blood pressure, the cardiac output, the acid-base state of arterial blood and the gas composition of arterial blood were also determined every other week in 4 subjects (2 from each group) while they were engaged in exercise on a bicycle ergometer at a rate of approximately 900 kg m/min until exhaustion. The maximal work capacity was also determined by asking the subject to engage in exercise on treadmill and ergometer until exhaustion. For the measurement of minute volume, the expired gas was collected in a Douglas bag. The $O_2$ consumption and the $CO_2$ output were subsequently computed by analysing the expired gas with a Scholander micro gas analyzer. The heart rate was calculated from the R-R interval of ECG tracings recorded by an Offner RS Dynograph. A 19 gauge Cournand needle was inserted into a brachial artery, through which arterial blood samples were taken. A Statham $P_{23}AA$ pressure transducer and a PR-7 Research Recorder were used for recording instantaneous arterial pressure. The cardiac output was measured by indicator (Cardiogreen) dilution method. The results may be summarized as follows: (1) The maximal running time on treadmill increased linearly during the 4 week training period at the end of which it increased by 2.8 to 4.6 times. In general, an increase in the maximal running time was greater when the speed was fixed at a level at which the subject was trained. The mammal exercise time on bicycle ergometer also increased linearly during the training period. (2) In carrying out a given running exercise on treadmill (8.6%grade, 127 m/min), the following changes in cardio·pulmonary functions were observed during the training period: (a) The minute volume as well as the $O_2$ consumption during steady state exercise tended to decrease progressively and showed significant reductions after 3 weeks of training. (b) The $CO_2$ production during steady state exercise showed a significant reduction within 1 week of training. (c) The heart rate during steady state exercise tended to decrease progressively and showed a significant reduction after 2 weeks of training. The reduction of heart rate following a given exercise tended to become faster by training and showed a significant change after 3 weeks. Although the resting heart rate also tended to decrease by training, no significant change was observed. (3) In rallying out a given exercise (900 kg-m/min) on a bicycle ergometer, the following change in cardio-vascular functions were observed during the training period: (3) The systolic blood pressure during steady state exercise was not affected while the diastolic blood Pressure was significantly lowered after 4 weeks of training. The resting diastolic pressure was also significantly lowered by the end of 4 weeks. (b) The cardiac output and the stroke volume during steady state exercise increased maximally within 2 weeks of training. However, the resting cardiac output was not altered while the resting stroke volume tended to increase somewhat by training. (c) The total peripheral resistance during steady state exercise was greatly lowered within 2 weeks of training. The mean circulation time during exorcise was also considerably shortened while the left heart work output during exercise increased significantly within 2 weeks. However, these functions_at rest were not altered by training. (d) Although both pH, $P_{co2}\;and\;(HCO_3-)$ of arterial plasma decreased during exercise, the magnitude of reductions became less by training. On the other hand, the $O_2$ content of arterial blood decreased during exercise before training while it tended to increase slightly after training. There was no significant alteration in these values at rest. These results indicate that cardio-pulmonary adaptations to physical training can be acquired by subjecting non-athletes to brief daily exercise routine for certain period of time. Although the time of appearance of various adaptive phenomena is not identical, it may be stated that one has to engage in daily exercise routine for at least 2 weeks for the development of significant adaptive changes.

  • PDF

Effect of Long-term Step Exercise on the Cardiopulmonary Function and Blood Constituents (장기간의 계단운동 훈련이 심폐기능과 혈액화학상에 미치는 영향)

  • Hwang, Sang-Ik;Choe, Myoung-Ae;Koh, Chang-Soon
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.305-311
    • /
    • 1987
  • To evaluate training effect, the step exercise was loaded to three mem for nine weeks. Step score, cardiopulmonary functions and blood constituents were measured before, during and after the test exercise (50 cm-step exercise and treadmill running), and were compared with the pre-tranining values. The results were as follows: 1) By the training, Harvard step score increased remarkably, expecially in the early stage of training. 2) The post-training values of maximal oxygen uptake increased very significantly and it seemed to be due to increases of stroke volume and tissue oxygen extraction. 3) After the training, the degree of increase in expired volume was small during the treadmill exercise. 4) By the training, increasing rate of respiratory quotient lessened during the exercise and it was considered to be caused by the decreases of carbohydrate consumption and anaerobic metabolism. 5) The blood cholesterol concentrations were harldy changed with this degree of training. 6) The blood lactate level decreased during the recovery periods and the values of the recovery 0 and 5 minutes decreased remarkably, in comparison with the pre-trained values. The above results suggest that the 9 week-training of the step exercise brings about the enhancement of circulatory functions and tissue oxygen utilization, and changes of food-stuffs used during the exercise.

  • PDF

The Effectiveness Verification of Whole-body Vibration through Comparative analysis of Muscle activity for Whole-body Vibration Exercise, Walking and Running (전신진동운동, 보행 및 런닝과의 근육활성량 및 근 발현 특성 비교 분석을 통한 전신진동운동 효과검증)

  • Moon, Young Jin;Cho, Won Jun
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.59-63
    • /
    • 2021
  • Objective: Through comparative analysis of muscle activity for whole-body vibration, walking and running movements, it is to verify the training effect of whole-body vibration exercise in terms of amount of exercise and muscle activity characteristics. Method: Flat ground walking and slope walking (10 degrees) at a speed of 5 km/h, flat ground running and slope running (10 degrees) at a speed of 11 km/h for running were performed on treadmill, and squats were maintained at 12 Hz, 20 Hz, and 29 Hz conditions on Whole body vibration exercise equipment (Galileo). Muscle activity was analyzed through EMG analysis device for one minute for each condition. Results: The Anterior Tibialis and Erector Spinae show greater exercise effect in whole-body vibration than walking and running. The Rectus Femoris, Biceps Femoris, and Gluteus Maximus have the best effect of exercise in flat running. Whole-body vibration exercise showed greater muscle activation effect as the frequency increased, and exercise effect similar to walking during the same exercise time. Conclusion: The amount of exercise through Whole-body vibration exercise was similar to that of walking exercise, and the Anterior Tibialis and Erector Spinae shows better exercise effect than walking and running.

Pretreatment Effect of Running Exercise on HSP70 and DOX-Induced Cardiotoxicity

  • Shirinbayan, Vahid;Roshan, Valiollah Dabidi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5849-5855
    • /
    • 2012
  • Objective: The purpose of this study was to determine pretreatment effects of moderate-term endurance training before the various dosages (10 and $20{_{mg.kg}}^{-1}$) of DOX on a heat shock protein ($HSP_{70kda}$) and cardiotoxicity in heart tissue. Methods: Forty-eight male rats were randomly assigned to nontraining (NT) and training (T) groups and three subgroups; $DOX{_{10mg.kg}}^{-1}$ and $DOX{_{20mg.kg}}^{-1}$ and saline treatment. The training program included treadmill running between 25-39 min/day and 15-17 m/min, 5 days/wk for 3 wk. Result: DOX administration, in particularly with $20{_{mg.kg}}^{-1}$, caused up-regulation of oxidants and cardiac damage (MDA, CK, CPK-MB and CK/CPK-MB) and down-regulation of cardioprotection ($HSP_{70}$, SOD) markers, as compared to NT+saline group. Pretreatment effect of treadmill running endurance exercise in the presence of DOX with $10{_{mg.kg}}^{-1}$ caused a significant increase in $HSP_{70}$, SOD and a significant decrease in MDA and insignificant decrease in CK, CPK-MB and CK/CPK-MB, in comparison $T+DOX_{10}$ with $NT+DOX_{10}$ group. However, there was no significant difference between $T+DOX{_{10mg.kg}}^{-1}$ and $T+DOX{_{20mg.kg}}^{-1}$ in the aforesaid markers. Conclusion: Dox-induced cardiotoxicity is related to oxidative stress. Our study suggests that pretreatment with endurance exercise may be considered as a potentially useful strategy to improve myocardial tolerance against single dose DOX-induced oxidative damage.

The Effect of Exercise Training on Blood and Metabolic Variances, and Genes Expressions in Hyperlipidemic Rats (고지혈증 흰쥐에서 운동훈련이 혈액, 대사 변인 및 유전자 발현에 미치는 영향)

  • Kim, Kihoon;Kwon, Taedong;Kim, Jongyeon
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This study was conducted to investigate the effect of exercise training on blood and metabolic variances and genes expressions in hyperlipidemic rats. Three weeks-old male rats were randomly assigned into chow (n=7), high-fat diet (HF, n=7) and HF+exercise (HF+EX, n=7) groups. Exercise training consisted of the treadmill running 5 times per week during 8 weeks (0% grade, 30 min/time for first 4 weeks and 0% grade, 60 min/time the other 4weeks). The levels of triglyceride and total -cholesterol were increased in HF diet compared with chow group, and recovered to level of chow group by exercise training. Plasma glucose and insulin concentrations increased by 40 and 50%, respectively in HF diet compared with chow diet group, and these increases returned to the level of chow group by exercise training (p<.05). Body weight and abdominal fat mass were increased by high-fat diet compared with chow diet, and recovered to level of chow group by exercise training. Long-chain fatty acid oxidation rate and AMPK protein expression was not changed by HF diet, but increased by exercise training compared with high-fat diet (p<.05). UCP3 protein expression was not changed by either high-fat diet or exercise training compared with chow group. There was high correlation between plasma triglyceride and total cholesterol concentrations(p<.01). Plasma triglyceride or total cholesterol level showed correlation with following factors; plasma insulin and glucose levels, body weight, abdominal fat weight, UCP3 protein expression and long-chain fatty acid oxidation rate. These results showed that exercise training on the treadmill recovered hyperlipidemia, hyperglycemia and hyperinsulinemia induced by high-fat diet for 8 weeks. These exercise effects may be related with decreased body weight and abdominal fat mass, and increased long-chain fatty acid oxidation rate.