• Title/Summary/Keyword: traveltime inversion

Search Result 33, Processing Time 0.024 seconds

Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves (P파 초동주시와 표면파 분산곡선 역산을 통한 흙댐의 이상대 탐지)

  • Kim, K.Y.;Jeon, K.M.;Hong, M.H.;Park, Young-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

Interpretation and Analysis of Seismic Crosshole Data: Case History (탄성파 토모그래피 단면측정 데이터 분석 및 해석: 현장응용 사례)

  • Kim Jung-Yul;Kim Yoo-Sung;Hyun Hye-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • Recently crosshole seismic tomography has come to be widely used especially for the civil engineering, because it can provide more detail information than any other surface method, although the resolution of tomogram will be inevitably deteriorated to some extent due to the limited wavefield aperture on the nonuniqueness of traveltime inversion. In addition, our field sites often consist of a high-velocity bed rock overlain by low-velocity rock, sometimes with a contrast of more than 45 percent, and furthermore the bed rock is folded. The first arriving waves can be then the refracted ones that travel along the bed rock surface for some source/receiver distances. Thus, the desirable first arrivals can be easily misread that cause severe distortion of the resulting tomogram, if it is concerned with (straight ray) traveltime inversion procedure. In this case, comparision with synthetic data (forward modeling) is a valuable tool in the interpretation process. Besides, abundant information is contained in the crosshole data. For instance, examination of tube waves can be devoted to detecting discontinuities within the borehole such as breakouts, faults, fractures or shear zones as well as the end of the borehole. Specific frequency characteristics of marine silty mud will help discriminate from other soft rocks. The aim of this paper is to present several strategies to analyze and interpret the crosshole data in order to improve the ability at first to determine the spatial dimensions of interwell anomalies and furthermore to understand the underground structures. To this end, our field data are demonstrated. Possibility of misreading the first arrivals was illustrated. Tube waves were investigated in conjunction with the televiewer images. Use of shot- and receiver gathers was examined to benefit the detectabilities of discontinuities within the borehole.

  • PDF

Case Study on the Type of Subsidence using Seismic Refraction Survey (탄성파 굴절법을 사용한 지반침하 형태분석 적용사례)

  • Yun Sang-Ho;Ji Jun;Lee Doo Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.132-146
    • /
    • 2000
  • Seismic refraction survey was performed for 10 lines along NE-SW and NW-SE directions above Nampoong gallery at Makyo-ri, Dogye, Samcheok, Kangwon-do. 48 geophones were laid in line with the interval of 1m, and a 5Kg hammer was used as a source at 5 points for each line. Data processing was done using reciprocal time method, GRM, and traveltime tomography which utilizes wavefront expansion method for forward process and STRT for inversion. The result shows that the first layer has its lower boundary between 3.49m and 8.88m. The P-wave velocity of the first and the second layer were estimated as 270${\~}$360m/s and 1550${\~}$1940m/s respectively. When the boundary of the first and second layer is smooth enough and the velocity difference is large enough, GRM has little advantage over reciprocal time method. The result of reciprocal method and traveltime tomography shows consistency. The northeast part of the boundary has syncline structure, which is similar to the topography above. This implies that the collapse of the cavities of Nampoong gallery result in the subsidence of the ground surface. The subsidence is in progress across the Youngdong railroad, therefore a proper reinforcement work is required.

  • PDF

Two-dimensional shear-wave velocity structures of the Korea peninsula from large explosions (대규모 발파를 통한 한반도 지각의 2차원적 횡파 속도구조 연구)

  • Kim, Ki-Young;Hong, Myung-Ho;Lee, Jung-Mo;Moon, Woo-Il;Baag, Chang-Eob;Jung, Hee-Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.75-79
    • /
    • 2007
  • To investigate the shear-wave velocity structures of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. First arrival times of shear wave were inverted to derive the velocity tomograms. Initial shear-wave 1-D models were built using the initial P-wave velocity models used by Kim et al. and $V_p/V_s$ ratios of the IASP91 model. The raypaths indicate existence of mid-crust interfaces at the depth of 2-3 km and 16 km. The deepest significant interface corresponding to the Moho discontinuity varies in depth from 32 km to 36 km. The refraction velocity along the interface varies from 4.4 km/s to 4.6 km/s. The velocity tomograms also indicate existence of a low-velocity zone at the depth of 7.8 km under the Okchon fold belt.

  • PDF

Simultaneous tomographic inversion of surface and borehole seismic traveltime data in the Pungam basin (풍암분지 시험시추공 주변에서의 지표 및 시추공 초동주시 토모그래피 동시역산)

  • Hong, Myung-Ho;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.125-130
    • /
    • 2006
  • Both surface seismic and far-offset VSP data were recorded alongtwo mutually perpendicular profiles in the Pungam basin. The first-arrival times were simultaneously inverted using the tomography method. For the surface data, seismic energy was generated by a 5-kg sledgehammer at 48 stations and detected by 21 surface geophones at 3 m intervals and one 3-component geophone in test borehole for the purpose of static corrections. For the VSP data, seismic waves generated by the sledgehammer on the ground were detected by a 3-component borehole geophone in a depth range of $9{\sim}99\;m$. Delay times of the hammer data were corrected using the seisgun data before the inversion to yield velocity tomograms. The tomograms indicates that the soil layer with velocities less than 750 m/s averages 1.8 m thick. The velocity varies from 5353 m/s at the depth range of $31{\sim}40\;m$ to 4262 m/s at the depth range of $65{\sim}73\;m$. Compared with core samples, the relatively large variation in velocity may due to lithology changes and fracture effects with depth.

  • PDF

Case Analysis of Seismic Velocity Model Building using Deep Neural Networks (심층 신경망을 이용한 탄성파 속도 모델 구축 사례 분석)

  • Jo, Jun Hyeon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.2
    • /
    • pp.53-66
    • /
    • 2021
  • Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.

Development of a GUI Crosswell Seismic Tomography Software on Linux (리눅스용 GUI 시추공 탄성파 토모그래피 프로그램 개발)

  • Sheen Dong-Hoon;Ko Kwang Beom;Park Jae-Woo;Ji Jun;Lee Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.150-156
    • /
    • 2002
  • In this study, a software for crosswell seismic tomography is developed. The software consists of first arrival picking and adjusting module, crosswell traveltime tomography module, and imaging module. This software allows saying the picked first arrival times into the header of seismic data, and using this data directly to the input of crosswell seismic tomography. With an imaging module, velocity structures and ray path can be imaged directly from the output of the tomography module. Because it is developed on the basis of the SU under the Linux and the GUI environment for user, this software can be carried out directly the first arrival picking, inversion and tomogram for crosswell tomography data in the field. Therefore, this software can be improved the applicability of site investigation by tomography method.

Subsurface Imaging using Headwave Stacking (선두파 중합을 이용한 천부지층의 영상화)

  • Park Jung-Jae;Ko Seung-Won;Shin Chang-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • For economy and convenience, seismic refraction survey is widely used in surveying for large civil engineering work. The purpose of this study is to obtain the numerical responses of various models using Kirchhoff migration, and to analyze its application to the real data processing. Synthetic traveltime curve was calculated by vidale's algorithm, and various models such as 2 or 3 layer model and irregular topography model are tested to simulate the response of real structure. In order to compare the effect of initial velocity model, true velocity models, inversion results by tomography, smooth velocity models are used as an initial guess. The responses of model data show that the algorithm of this study is more sensitive to initial velocity model than the reflection survey, so choosing a suitable initial velocity model will be the most important thing in real data processing.

Field Application of 3D seismic travel-time tomography (3차원 탄성파 지대공 토모그래피 현장 적용)

  • Moon, Yun-Seop;Ha, Hee-Sang;Lim, Harry;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.233-237
    • /
    • 2006
  • 3D travel time tomography was conducted to characterize the subsuface structure in the valley area. In this study, an area($200m{\times}200m$), where borehole informations were available to aid in the interpretation, was covered with wide source/receiver coverage. In data acquisition, both hole to hole and reverse VSP array was employed. For the inversion, 3D seismic traveltime tomography algorithm based on Fresnel volume was implemented. When compared 3D velocity cube with the geological survey and drilling logs, both results were matched well. From this, we concluded that 3D seismic travel time tomography has enough potential to the field application.

  • PDF

Development of Efficient Monitoring Algorithm at EGS Site by Using Microseismic Data (미소진동 자료를 이용한 EGS 사이트에서의 효율적인 모니터링 알고리듬 개발)

  • Lee, Sangmin;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.111-120
    • /
    • 2016
  • In order to enhance the connectivity of fracture network as fluid path in enhanced/engineered geothermal system (EGS), the exact locating of hydraulic fractured zone is very important. Hydraulic fractures can be tracked by locating of microseismic events which are occurred during hydraulic fracture stimulation at each stage. However, since the subsurface velocity is changed due to hydraulic fracturing at each stage, in order to find out the exact location of microseismic events, we have to consider the velocity change due to hydraulic fracturing at previous stage when we perform the mapping of microseimic events at the next stage. In this study, we have modified 3D locating algorithm of microseismic data which was developed by Kim et al. (2015) and have developed 3D velocity update algorithm using occurred microseismic data. Eikonal equation which can efficiently calculate traveltime for complex velocity model at anywhere without shadow zone is used as forward engine in our inversion. Computational cost is dramatically reduced by using Fresnel volume approach to construct Jacobian matrix in velocity inversion. Through the numerical test which simulates the geothermal survey geometry, we demonstrated that the initial velocity model was updated by using microseismic data. In addition, we confirmed that relocation results of microseismic events by using updated velocity model became closer to true locations.