• 제목/요약/키워드: traveling salesman

검색결과 185건 처리시간 0.027초

다변수 순회 판매원 문제를 위한 퍼지 로직 개미집단 최적화 알고리즘 (Development of Fuzzy Logic Ant Colony Optimization Algorithm for Multivariate Traveling Salesman Problem)

  • 이병길;전규범;이종환
    • 산업경영시스템학회지
    • /
    • 제46권1호
    • /
    • pp.15-22
    • /
    • 2023
  • An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.

A Combined Greedy Neighbor Generation Method of Local Search for the Traveling Salesman Problem

  • Yongho Kim;Junha Hwang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2024
  • 순회 외판원 문제(TSP)는 잘 알려진 조합 최적화 문제 중 하나이다. 지역 탐색은 TSP를 해결하기 위한 한 가지 방법으로 사용되어 왔다. Greedy Random Insertion(GRI)은 지역 탐색을 위한 효과적인 이웃해 생성 방법으로 알려져 있다. GRI는 현재해로부터 일부 도시들을 무작위로 선택하고 그 도시들을 한 번에 하나의 도시만 고려하여 현재 부분해의 최적 위치로 삽입한다. 본 논문에서는 먼저 Full Greedy Insertion(FGI)이라는 또 다른 그리디 이웃해 생성 방법을 제안한다. FGI는 GRI와 마찬가지로 삽입 위치를 하나씩 결정하되 남은 모든 도시들을 한꺼번에 고려하여 결정한다. 그리고 본 논문에서는 GRI와 FGI를 결합하는 방법을 제시한다. 결합 방법에서는 시뮬레이티드 어닐링 내에서 매 반복 시 GRI 또는 FGI를 무작위로 선택하여 실행한다. 실험 결과에 의하면, FGI 단독으로는 성능이 매우 우수한 것은 아니다. 그러나 결합 방법은 GRI를 포함한 기존의 지역 탐색 방법들보다 우수한 성능을 발휘함을 확인하였다.

회로기판 생산에서의 대형 외판원문제를 위한 경험적 해법의 응용 (An Application of Heuristic Algorithms for the Large Scale Traveling Salesman Problem in Printed Circuit Board Production)

  • 백시현;김내헌
    • 산업경영시스템학회지
    • /
    • 제20권41호
    • /
    • pp.177-188
    • /
    • 1997
  • This study describes the important information for establishing Human Computer Interface System for solving the large scale Traveling Saleman Problem in Printed Circuit Board production. Appropriate types and sizes of partitioning of large scale problems are discussed. Optimal tours for the special patterns appeared in PCB's are given. The comparision of optimal solutions of non-Euclidean problems and Euclidean problems shows the possibilities of using human interface in solving the Chebyshev TSP. Algorithm for the large scale problem using described information and coputational result of the practical problem are given.

  • PDF

Multi-vehicle Route Selection Based on an Ant System

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권1호
    • /
    • pp.61-67
    • /
    • 2008
  • This paper introduces the multi-vehicle routing problem(MRP) which is different from the traveling sales problem(TSP), and presents the ant system(AS) applied to the MRP. The proposed MRP is a distributive model of TSP since many vehicles are used, not just one salesman in TSP and even some constraints exist. In the AS, a set of cooperating agents called vehicles cooperate to find good solutions to the MRP. To make the proposed MRP extended more, Tokyo city model(TCM) is proposed. The goal in TCM is to find a set of routes that minimizes the total traveling time such that each vehicle can reach its destination as soon as possible. The results show that the AS can effectively find a set of routes minimizing the total traveling time even though the TCM has some constraints.

용량제약이 없는 복수 순회구매자 문제 (Uncapacitated Multiple Traveling Purchaser Problem)

  • 최명진;이상헌
    • 대한산업공학회지
    • /
    • 제36권2호
    • /
    • pp.78-86
    • /
    • 2010
  • The traveling purchaser problem(TPP) is a generalization of the well-known traveling salesman problem(TSP), which has many real-world applications such as purchasing the required raw materials for the manufacturing factories and the scheduling of a set of jobs over some machines, and many others. TPP also could be extended to the vehicle routing problem(VRP) by incorporating additional constraints such as multi-purchaser, capacity, distance and time restrictions. In the last decade, TPP has received some attention of the researchers in the operational research area. However it has not received the equivalent interest as much as TSP and VRP. Therefore, there does not exist a review of the TPP. The purpose of this paper is to review the TPP and to describe solution procedures proposed for this problem. We also introduce the ILP formulation for the multiple TPP(mTPP) which is generalized type of TPP. We compare the system performance according to change from TPP to mTPP.

용량제약이 있는 복수 순회구매자 문제의 휴리스틱 해법 (Heuristic Approach for the Capacitated Multiple Traveling Purchaser Problem)

  • 최명진;이상헌
    • 산업공학
    • /
    • 제24권1호
    • /
    • pp.51-57
    • /
    • 2011
  • The traveling purchaser problem (TPP) is a generalization of the well-known traveling salesman problem (TSP), which has many real-world applications such as purchasing the required raw materials for the manufacturing factories and the scheduling of a set of jobs over some machines, and many others. In the last decade, TPP has received some attention of the researchers in the operational research area. However, all of the past researches for TPP are restricted on a single purchaser (vehicle). It could be the limitation to solve the real world problem. The purpose of this paper is to suggest the capacitated multiple TPP (CMTPP). It could be used in inbound logistics optimization in supply chain management area and many others. Since TPP is known as NP-hard, we also developed the heuristic algorithm to solve the CMTPP.

전시 최장 획득완료시간 최소화를 위한 복수 순회구매자 문제 (The Multiple Traveling Purchaser Problem for Minimizing the Maximal Acquisition Completion Time in Wartime)

  • 최명진;문우범;최진호
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.458-466
    • /
    • 2011
  • In war time, minimizing the logistics response time for supporting military operations is strongly needed. In this paper, i propose the mathematical formulation for minimizing the maximal acquisition completion time in wartime or during a state of emergency. The main structure of this formulation is based on the traveling purchaser problem (TPP), which is a generalized form of the well-known traveling salesman problem (TSP). In the case of the general TPP, an objective function is to minimize the sum of the traveling cost and the purchase cost. However, in this study, the objective function is to minimize the traveling cost only. That's why it's more important to minimize the traveling cost (time or distance) than the purchase cost in wartime or in a state of emergency. I generate a specific instance and find out the optimal solution of this instance by using ILOG OPL STUDIO (CPLEX version 11.1).

A hybrid tabu search algorithm for Task Allocation in Mobile Crowd-sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.102-108
    • /
    • 2020
  • One of the key features of a mobile crowd-sensing (MCS) system is task allocation, which aims to recruit workers efficiently to carry out the tasks. Due to various constraints of the tasks (such as specific sensor requirement and a probabilistic guarantee of task completion) and workers heterogeneity, the task allocation become challenging. This assignment problem becomes more intractable because of the deadline of the tasks and a lot of possible task completion order or moving path of workers since a worker may perform multiple tasks and need to physically visit the tasks venues to complete the tasks. Therefore, in this paper, a hybrid search algorithm for task allocation called HST is proposed to address the problem, which employ a traveling salesman problem heuristic to find the task completion order. HST is developed based on the tabu search algorithm and exploits the premature convergence avoiding concepts from the genetic algorithm and simulated annealing. The experimental results verify that our proposed scheme outperforms the existing methods while satisfying given constraints.

강화학습기법을 이용한 TSP의 해법 (A Learning based Algorithm for Traveling Salesman Problem)

  • 임준묵;배성민;서재준
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.61-73
    • /
    • 2006
  • This paper deals with traveling salesman problem(TSP) with the stochastic travel time. Practically, the travel time between demand points changes according to day and time zone because of traffic interference and jam. Since the almost pervious studies focus on TSP with the deterministic travel time, it is difficult to apply those results to logistics problem directly. But many logistics problems are strongly related with stochastic situation such as stochastic travel time. We need to develop the efficient solution method for the TSP with stochastic travel time. From the previous researches, we know that Q-learning technique gives us to deal with stochastic environment and neural network also enables us to calculate the Q-value of Q-learning algorithm. In this paper, we suggest an algorithm for TSP with the stochastic travel time integrating Q-learning and neural network. And we evaluate the validity of the algorithm through computational experiments. From the simulation results, we conclude that a new route obtained from the suggested algorithm gives relatively more reliable travel time in the logistics situation with stochastic travel time.