• Title/Summary/Keyword: travel type

Search Result 288, Processing Time 0.021 seconds

Factors Affecting Spatial Distance to Outpatient Health Services (공간분석을 이용한 외래의료서비스 접근성 요인분석)

  • Shin, Ho-Sung;Lee, Sue-Hyung
    • Health Policy and Management
    • /
    • v.21 no.1
    • /
    • pp.23-43
    • /
    • 2011
  • Access to health care is complicated to define. It is a multidimensional process. In addition to the matters of quality of care, geographical accessibility and availability of the right type of care, finance, and acceptability are all involved. The purposes of this paper are to measure the geographic distances between patient residency locations and health service organizations in which the patients hadvisited, and to investigate the association between geographical distance measures and variables involved in health service utilization. The study used the first and the second wave of the 2008 Korea Health Panel Survey. The samples of analyses were patients who had visited outpatient or used ambulatory health services, and the total observations (visit numbers) analyzed were 229,128. We divided the samples into a frequent-visit illness group (Group 1) and a non-frequent visit illness group (Group 2) based on over 5,000 total visit numbers. We exploited three level analyses using xtmixed of STATA${\Box}$ 11.1 command with/without interaction terms among age, sex, and occupation. Geographical distances were measured using the Haversine method. Group 1 was tended to older and lower equivalent income than those of Group 2, but the geographic difference were not observed in terms of area deprivation index and standard mortality ratios. Amongst group 1, diabetes mellitus patients travelled far to visit health care organizations, and arthritis patients were more deprived in terms of the personal and areal characteristics. The study revealed that residents in rural areas traveled about 10 times more long distances than those whom lived in larger cities after adjusting for various variables, which we used for analyses. This study contributed to the practical understanding of health service utilizations using empirical analyses, and found that the types of diseases and socioeconomic characteristics of patients tended to define the amount of travel distance to healthcare organizations.

The First Photometric Study of the Neglected Contact Binary GX Aurigae

  • Park, Jang-Ho;Lee, Jae Woo;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.41.3-42
    • /
    • 2016
  • New CCD photometric observations of GX Aur have been made between 2004 and 2015. Our light curves are the first ever compiled and display the variable O'Connell effect. The light variations are satisfactorily modeled by including time-varying cool-spots on the component stars. Our light curve synthesis indicates that the eclipsing pair is an A-type contact binary with parameters of i = 81.1 deg, ${\Delta}T=36K$, q = 0.950 and f = 46%. Including our 25 timing measurements, a total of 83 times of minimum light spanning about 66 yr were used for a period study. It was found that the orbital period of GX Aur has varied due to two periodic oscillations superposed on an upward-opening parabolic variation. The long-term period increase rate is deduced as $+9.636{\times}10^{-10}d\;yr^{-1}$, which can be produced as a mass transfer from the secondary star to the primary at a rate of $3.136{\times}10^{-6}M_{\odot}\;yr^{-1}$, among the largest rates for contact systems. The periods and semi-amplitudes of the two periodic variations are about $P_3=8.7yr$ and $P_4=21.2yr$, and $K_3=0.011d$ and $K_4=0.017d$, respectively. The most reasonable explanation for both cycles is a pair of light-travel-time effects driven by the possible existence of an unseen third and fourth components with projected masses of $M_3=0.91M_{\odot}$ and $M_4=1.09M_{\odot}$ in eccentric orbits of $e_3=0.13$ and $e_4=0.73$. Because no third light was detected in the light curve synthesis, each circumbinary object could be a compact star or a binary itself.

  • PDF

A Study on the Thermal and Chemical Properties of Carbon Nanotube Reinforced Nanocomposite in Power Cables

  • Yang, Sang-Hyun;Jang, Hyeok-Jin;Park, Noh-Joon;Park, Dae-Hee;Yang, Hoon;Bang, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.217-221
    • /
    • 2009
  • The use of the carbon nanotube (CNT) is superior to the general powder state materials in their thermal and chemical properties. Because its ratio of diameter to length (aspect ratio) is very large, it is known to be a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of the semiconductive shield materials used in power cables can acquire excellent properties by the use of a small amount of CNTs. Therefore, we fabricated specimens using a solution mixing method. We investigated the thermal properties of the CNT, such as its storage modulus, loss modulus, and its tan delta using a dynamic mechanical analysis 2980. We found that a high thermal resistance level is demonstrated by using a small amount of CNTs. We also investigated the chemical properties of the CNT, such as the oxidation reaction by using Fourier transform infrared spectroscopy (FT-IR) made by Travel IR. In the case of the FT-IR tests, we searched for some degree of oxidation by detecting the carboxyl group (C=O). The results confirm a tendency for a high cross-linking density in a new network in which the CNTs situated between the carbon black constituent molecules show a bond using similar constructive properties.

Routing of ALVs under Uncertainty in Automated Container Terminals (컨테이너 터미널의 불확실한 환경 하에서의 ALV 주행 계획 수립방안)

  • Kim, Jeongmin;Lee, Donggyun;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.493-501
    • /
    • 2014
  • An automated lifting vehicle(ALV) used in an automated container terminal is a type of unmanned vehicle that can self-lift a container as well as self-transport it to a destination. To operate a fleet of ALVs efficiently, one needs to be able to determine a minimum-time route to a given destination whenever an ALV is to start its transport job. To find a route free from any collision or deadlock, the occupation time of the ALV on each segment of the route should be carefully scheduled to avoid any such hazard. However, it is not easy because not only the travel times of ALVs are uncertain due to traffic condition but also the operation times of cranes en route are not predicted precisely. In this paper, we propose a routing method based on an ant colony optimization algorithm that takes into account these uncertainties. The result of simulation experiment shows that the proposed method can effectively find good routes under uncertainty.

A Study on Utilization of Drone for Public Sector by Analysis of Drone Industry (국내외 드론산업 동향 분석을 통한 공공분야에서의 드론 활용방안에 대한 연구)

  • Sim, Seungbae;Kwon, Hunyeong;Jung, Hosang
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.25-39
    • /
    • 2016
  • The drone is an unmanned aerial vehicle which has no human pilot. Drones can be classified into military drones, commercial drones, and personal drones by usage. Also, drones can be classified from large-sized to nano-sized drone by size and autonomous, remote controlled drone by control type. Especially, military drones can be classified into low-altitude drones, medium-altitude, and high-altitude drones by altitude. Recently, the drone industry is one of the fast growing industries in the world. As drone technologies have become more advanced and cost-effective, Korean government has set its goal to become a top-level country in drone business. However, the government's strict regulation for drone operations is one of the biggest hurdles for the development of the related technologies in Korea and other countries. For example, critical problems for drone delivery can be classified into technical issues and institutional issues. Technical issues include durability, conditional awareness, grasp and release mechanisms, collision avoidance systems, drone operating system. Institutional issues include pilot and operator licensing, privacy rules, noise guidelines, security rules, education for drone police. This study analyzes the trends of the drone industry from the viewpoint of technology and regulation. Also, we define the business areas of drone utilization. Especially, the drone business types or models for public sector are proposed. Drone services or functions promoting public interests need to be aligned with the business reference model of Korean government. To define ten types of drone uses for public sector, we combine the business types of government with the future uses of drones that are proposed by futurists and business analysts. Future uses of drones can be divided into three sectors or services. First, drone services for public or military sectors include early warning systems, emergency services, news reporting, police drones, library drones, healthcare drones, travel drones. Second, drone services for commercial or industrial services include parcel delivery drones, gaming drones, sporting drones, farming and agriculture drones, ranching drones, robotic arm drones. Third, drone services for household sector include smart home drones.

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

Development of a traffic simulation model analyzing the effects of highway incidents using the CA(Cellular Automata) model (CA(Cellular Automata) 모형을 이용한 고속도로 돌발상황 영향 분석 교통 시뮬레이션 모형 개발)

  • 천승훈;노정현
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.219-227
    • /
    • 2001
  • In this study, the simulation was constructed using CA(Cellular Automata) rule to analyze the effect of incidents, which was verified using real-time VDS data and data collected on the field. The study analyzed the effect of incidents on highways by the simulation. The result appears to be statistically available with 5% of significance level. In order to analyze the effect of incident, the study classified time period of incidents and types of incidents in relation with traffic volume. Also, the effect of each type of incidents was analyzed in terms of time difference in sectional travel and delay time. In conclusion, little effect of incidents on traffic flow is noticed with light traffic volume but it becomes serious as the traffic volume increases. In addition, the delay happens to appear without incidents as the traffic volume increases over 2000 veh/hour. Also, when incidents happened during 45 minutes, the delay was about 425-722 veh·hour.

  • PDF

A Study on the Benefit of Driving Amenity Based on Highway Density (도로 밀도에 따른 운전쾌적성 편익에 관한 연구)

  • Cho, Hanseon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.48-59
    • /
    • 2013
  • Normally the benefits concerned in the feasibility study for highway constructions are travel time saving, vehicle operation cost, etc. which can be calculated using the simulation tool(EMME3). However, there must be extra benefits of driving amenity improvement that drivers can perceive through decreasing driving fatigue and improving driving comfortability. In this study, the definition of driving amenity was established and a method of estimation for the benefit of driving amenity improvement was developed. Highway type (urban/rural highway) and highway density was considered to estimate the driving amenity. And Double-bounded Dichotomous Choice among Contingent Valuation Method(CVM) was applied to survey the willingness-to-pay of drivers when highway density decreases. Finally the value of driving amenity was estimated using the results of survey and logit medel. As the existing highway density is high, willingness-to-pay increases in both urban and rural highways. Even though the changing rates of highway density are same, willingness-to-pay is different based on the existing highway density.

Development of Optimized Headland Turning Mechanism on an Agricultural Robot for Korean Garlic Farms

  • Ha, JongWoo;Lee, ChangJoo;Pal, Abhishesh;Park, GunWoo;Kim, HakJin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.273-284
    • /
    • 2018
  • Purpose: Conventional headland turning typically requires repeated forward and backward movements to move the farming equipment to the next row. This research focuses on developing an upland agricultural robot with an optimized headland turning mechanism that enables a $180^{\circ}$ turning positioning to the next row in one steering motion designed for a two-wheel steering, four-wheel drive agricultural robot named the HADA-bot. The proposed steering mechanism allows for faster turnings at each headland compared to those of the conventional steering system. Methods: The HADA-bot was designed with 1.7-m wide wheel tracks to travel along the furrows of a garlic bed, and a look-ahead path following algorithm was applied using a real-time kinematic global positioning system signal. Pivot turning tests focused primarily on accuracy regarding the turning radius for the next path matching, saving headland turning time, area, and effort. Results: Several test cases were performed by evaluating right and left turns on two different surfaces: concrete and soil, at three speeds: 1, 2, and 3 km/h. From the left and right side pivot turning results, the percentage of lateral deviation is within the acceptable range of 10% even on the soil surface. This U-turn scheme reduces 67% and 54% of the headland turning time, and 36% and 32% of the required headland area compared to a 50 hp tractor (ISEKI, TA5240, Ehime, Japan) and a riding-type cultivator (CFM-1200, Asia Technology, Deagu, Rep. Korea), respectively. Conclusion: The pivot turning trajectory on both soil and concrete surfaces achieved similar results within the typical operating speed range. Overall, these results prove that the pivot turning mechanism is suitable for improving conventional headland turning by reducing both turning radius and turning time.

Prototype Development of a Small Combine for Harvesting Miscellaneous Cereal Crops and its Basic Performance

  • Lee, Beom Seob;Yoo, Soonam;Lee, Changhoon;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.311-319
    • /
    • 2018
  • Purpose: The aim of this study is to develop a small combine for harvesting miscellaneous cereal crops. Methods: A prototype small combine was designed and constructed. Its specifications and basic performance were investigated. Results: The prototype small combine for harvesting miscellaneous cereal crops was designed and constructed to reflect similar specifications as those of the conventional combine. The prototype small combine comprises a diesel engine with the rated power/speed of 22.0 kW/2,600 rpm, three-stage primary and two-stage speed range transmission shifts, and a double acting threshing part. The maximum travel speeds of the prototype combine are approximately 0.72 m/s, 2.50 m/s, 0.30 m/s at the low, high speed range shifts in the forward direction, and while traversing in the reverse direction, respectively. The minimum radius of turning was approximately 1.50 m. In a static lateral overturning test, the prototype combine overturned neither to the right nor to left on a $30^{\circ}$ slope. The results of an oilseed rape harvesting test included the maximum operating speed of 0.32 m/s, the grain loss ratio of approximately 9.0%, and the effective field capacity of approximately 10.3 a/h. Additionally, among the outputs in grain outlet, the whole grains, damage grains, and materials other than grain (MOG) ratios accounted for 97.4%, 0.0%, and 2.6%, respectively. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops indicates good driving ability and stability. The results of the oilseed rape harvesting test reveal that the harvesting performance must be enhanced such that the separating and cleaning parts are more suitable for each type of crop, thus reducing grain loss and foreign substances among the outputs in grain outlet. An improved small prototype combine could be used effectively to mechanize the harvesting of miscellaneous cereal crops in small family farms or semi-mountainous areas.