• 제목/요약/키워드: travel speed prediction

검색결과 34건 처리시간 0.027초

결측 택시 Probe 통행속도 예측기법 개발에 관한 연구 (A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe)

  • 윤병조
    • 대한토목학회논문집
    • /
    • 제31권1D호
    • /
    • pp.43-50
    • /
    • 2011
  • 택시 프로브(Probe)를 이용한 구간통행속도 모니터링체계는 지능형교통체계(ITS)의 핵심적인 하부시스템 중 하나이다. 택시 프로브기법을 통해 수집되는 구간통행속도는 도시가로망의 교통상태 모니터링과 통행시간 정보제공에 널리 활용되고 있다. 그러나 택시 Probe기법은 표본수가 적고 교통혼잡으로 인하여 구간통행시간이 자료수집 주기보다 큰 경우, 실시간으로 자료가 수집되지 않는 누락상태가 발생하게 된다. 이러한 누락상태는 단일시간대에서 다중시간대에 걸쳐 발생하게 되며, 기존의 단일시간대 예측기법으로는 다중시간대의 상태를 예측하지 못하는 단점이 있다. 따라서 다중시간대 누락상태에서 실시간 구간통행속도를 예측하기위한 기법이 요구된다. 본 연구에서는 기존의 단일시간대 예측기법의 한계를 극복하면서 단일 및 다중시간대 통행속도를 예측하기위한 기법을 개발하였다. 개발된 모형은 비모수회귀(NPR)을 기반으로 개발되었으며, 다중시간대 예측에도 불구하고 기존의 단일시간대 예측기법보다 우수한 정확도를 보였다.

시공간적 영향력을 반영한 딥러닝 기반의 통행속도 예측 모형 개발 (Development of Traffic Speed Prediction Model Reflecting Spatio-temporal Impact based on Deep Neural Network)

  • 김영찬;김준원;한여희;김종준;황제웅
    • 한국ITS학회 논문지
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2020
  • 4차 산업혁명 시대가 도래함에 따라 빅데이터를 활용하는 딥러닝에 대한 관심이 높아졌으며 다양한 분야에서 딥러닝을 이용한 연구가 활발하게 진행되고 있다. 교통 분야에서도 교통빅데이터를 많이 활용하는 만큼 딥러닝을 연구에 이용한다면 많은 이점이 있을 것이다. 본 연구에서는 통행속도를 예측하기 위하여 딥러닝 기법인 LSTM을 이용한 단기 통행속도 예측 모형을 구축하였다. 예측에 활용한 데이터인 통행속도 데이터가 시계열 데이터인 것을 고려하여 시계열 예측에 적합한 LSTM 모델을 선택하였다. 통행속도를 보다 정확하게 예측하기 위하여 시간적, 공간적 영향을 모두 반영하는 모형을 구축하였으며, 모형은 1시간 이후를 예측하는 단기 예측모형이다. 분석데이터는 서울시 교통정보센터에서 수집한 5분 단위 통행속도를 활용하였고 분석구간은 교통이 혼잡한 강남대로 일부구간으로 선정하여 연구를 수행하였다.

앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측 (Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition)

  • 김의진;김동규
    • 대한토목학회논문집
    • /
    • 제38권4호
    • /
    • pp.579-586
    • /
    • 2018
  • 단기 통행속도 예측을 위해 데이터 기반 비모수적 기법들을 활용한 다양한 연구들이 수행되고 있다. 그럼에도 교통신호 및 교차로로 인한 복잡한 동적 특성을 가지는 도시부의 예측 연구는 상대적으로 부족한 실정이다. 본 연구는 도시부 통행 속도를 예측하기 위해 앙상블 경험적 모드 분해법(EEMD)과 인공신경망(ANN)을 이용한 하이브리드 접근법을 제안하는 것을 목적으로 한다. EEMD는 통행속도의 시계열 자료를 고유모드함수(IMF)와 오차항으로 분해한다. 분해된 IMF는 시간단위의 국지적 특성을 반영하며, ANN을 통해 개별적으로 예측된다. IMF는 원본데이터가 가진 비선형성, 비정상성, 진동 등의 복잡성을 완화하기 때문에, 원래의 통행속도에 비하여 더 정확하게 예측될 수 있다. 예측된 IMF들은 합산되어 예측 통행속도를 표현한다. 본 연구에서 제시된 방법을 검증하기 위하여 대구시의 DSRC로부터 구득된 통행속도 데이터가 활용된다. 성능평가는 도시부 링크 중 특히 예측이 어려운 지점에 대해 수행되었으며, 분석 결과 제시된 모형은 15분 후 예측에 대해 각각 평상시 10.41%, 와해상태시 25.35%의 오차율을 가지며, 단순 ANN 기법에 비하여 우수한 성능을 보이는 것으로 확인된다. 본 연구에서 개발된 모형은 도시교통관리체계의 신뢰성 있는 교통정보를 제공하는 데에 기여할 수 있을 것으로 기대된다.

2차로도로 평균 통행속도-총지체율-교통량 관계 곡선 재정립 (Relationships Between Average Travel Speed, Time-Delayed Rate, and Volume on Two-lane Highways with Simulation Data)

  • 문재필;김용석
    • 한국도로학회논문집
    • /
    • 제14권6호
    • /
    • pp.131-138
    • /
    • 2012
  • PURPOSES : Two-lane highways have one lane in each direction, and lane changing and passing maneuvers take place in the opposing lane depending on the availability of passing sight distance. 2001 Korea Highway Capacity Manual (KHCM) is classified into two classes of two-lane highways (Type I, II), and average travel speed and time-delayed rate are used as measures of effectiveness (MOEs). However, since existing two-lane highways have both uninterrupted and interrupted traffic flow-system elements, a variety of free-flow speeds exhibits in two-lane highways. In addition, it is necessary to check if the linear-relationship between volumes and time-delayed rate is appropriate. Then, this study is to reestablish the relationship between average travel speed, time-delayed rate, and flow. METHODS : TWOPAS model was selected to conduct this study, and the free-flow speeds of passenger cars and the percentage of following vehicles observed in two-lane highways were applied to the model as the input. The revised relationships were developed from the computer simulation. RESULTS : In the revised average travel speed vs. flow relationship, the free-flow speed of 90km/h and 70km/h were added. It shows that the relationship between time delayed-rate and flow appeared to be appropriate with the log-function form and that there was no difference in time-delayed rate between the free flow speeds. In addition to revise the relationships, the speed prediction model and the time-delayed rate prediction model were also developed. CONCLUSIONS : The revised relationships between average travel speed, time-delayed rate, and flow would be useful in estimating the Level of Service(LOS) of a two-lane highway.

신경망을 이용한 고속도로 여행시간 추정 및 예측모형 개발 (The Development of Freeway Travel-Time Estimation and Prediction Models Using Neural Networks)

  • 김남선;이승환;오영태
    • 대한교통학회지
    • /
    • 제18권1호
    • /
    • pp.47-59
    • /
    • 2000
  • 본 연구에서는 고속도로 교통관리시스템에서 VDS 교통정보 와 대상지역의 TCS로부터 여행시간을 수집하고, 이들 자료를 토대로 신경망 이론을 이용한 여행시간 추정(Estimation)모형을 구축하였다. 또한, 신경망 이론에 칼만필터기법(Kalman Filter Technique)을 연계하여 단위시간 동안의 여행시간을 예측(Prediction)하여, 고속도로 이용자에게 보다 향상된 실시간 여행시간정보를 제공할 수 있는 여행시간 추정 및 예측 알고리즘을 개발하였다. 신경망 모형의 여행시간 추정 방식과 현재 적용되고 있는 여행시간 산출 방식의 비교/분석을 위해 각 각의 여행시간 산출방식에 의한 평가지표별로 시행한 평가의 결과는 신경망 모형이 제시한 대부분의 지표에서 상대적으로 우수하게 나타났다.

  • PDF

GRU 기반의 도시부 도로 통행속도 예측 모형 개발 (Development of a Speed Prediction Model for Urban Network Based on Gated Recurrent Unit)

  • 김호연;이상수;황재성
    • 한국ITS학회 논문지
    • /
    • 제22권1호
    • /
    • pp.103-114
    • /
    • 2023
  • 본 연구에서는 도시부 도로의 다양한 자료를 수집하여 통행속도 변화에 대한 영향을 분석하였고, 이와 같은 빅데이터를 활용하여 GRU 기반의 단기 통행속도 예측 모형을 개발하였다. 그리고 Baseline 모형과 이중지수평활 모형을 비교 모형으로 선정하여 RMSE 지표로 예측 오차를 평가하였다. 모형 평가 결과, Baseline 모형과 이중지수평활 모형의 RMSE는 평균 7.46, 5.94값으로 각각 산출되었다. 그리고 GRU 모형으로 예측한 평균 RMSE는 5.08 값이 산출되었다. 15개 링크별로 편차가 있지만, 대부분의 경우 GRU 모형의 오차가 최소의 값을 나타내었고, 추가적인 산점도 분석 결과도 동일한 결과를 제시하였다. 이러한 결과로부터 도시부 도로의 통행속도 정보 생성 과정에서 GRU 기반의 예측 모형 적용 시 예측 오차를 감소시키고 모형 적용 속도의 개선을 기대할 수 있을 것으로 판단된다.

$Na{\ddot{i}}ve$ Bayesian 분류화 기법을 이용한 시간대별 평균 구간 속도 기반 주행 시간 예측 알고리즘 (Travel Time Prediction Algorithm Based on Time-varying Average Segment Velocity using $Na{\ddot{i}}ve$ Bayesian Classification)

  • 엄정호;니하드카림초우더리;이현조;장재우;김연중
    • 한국공간정보시스템학회 논문지
    • /
    • 제10권3호
    • /
    • pp.31-43
    • /
    • 2008
  • 주행 시간 예측은 첨단 여행정보 시스템 (ATIS) 및 교통관리 시스템 (ITS)에서 필수적이다. 이를 위해 본 연구에서는 대용량의 데이터 분류에서 높은 정확도와 빠른 속도를 보장하는 $Na{\ddot{i}}ve$ Bayesian 분류화 기법을 기반으로 한 주행시간 예측 알고리즘을 제안한다. 제안된 알고리즘은 도로 네트워크 상에서 사용자 지정 주행 경로에 대하여 주행시간 예측이 가능하며, 또한 주어진 경로에 대해 시간대 별 평균 구간 속도를 고려하여 보다 정확한 주행 시간 예측을 수행한다. 제안된 알고리즘을 기존의 링크-기반 예측(link-based prediction)알고리즘[1] 및 Micro T* 알고리즘[2]과 성능 비교를 수행하였다. 성능 비교 결과, 제안된 기법이 타 예측기법에 비해 MARE (mean absolute relative error)가 크게 감소하여 성능이 향상되었음을 보였다.

  • PDF

UTIS기반 구간통행속도 예측을 위한 교통이력자료 구축에 관한 연구 (A Study on the Construction of Historical Profiles for Travel Speed Prediction Using UTIS)

  • 기용걸;안계형;김은정;배광수
    • 한국ITS학회 논문지
    • /
    • 제11권6호
    • /
    • pp.40-48
    • /
    • 2012
  • 교통정보센터는 통행속도 정보를 수집하여 사용자에게 제공한 후, 이력자료를 데이터베이스에 저장하여 관리하고 있다. 통행속도 이력자료를 이용하여 통행속도를 예측할 때 사용되는 대푯값과 과거 데이터량에 따라 통행속도 예측 정확도가 다르게 나타나나, 이에 대한 체계적인 연구가 부족한 실정이다. 본 연구에서 신뢰성 있는 통행속도 예측을 위해 통행속도 이력자료의 적정 대푯값과 과거 데이터량을 결정하기 위한 방법을 제안하였다. 제안된 방법의 평가를 위해, 서울시 4개 도로구간의 최근 1년간 화요일(평일) 및 일요일(공휴일) 통행속도 이력자료를 수집하여 현장실험을 실시하였다. 실험결과 통행속도 예측을 위한 적정 대푯값은 평균값 및 가중평균값으로 분석되었으며, 통행속도 예측을 위한 적정 과거 데이터량은 2개월로 나타났다.

돌발상황 검지를 위한 교통 CCTV 기반 통행속도 추정 모델 (A Travel Speed Prediction Model for Incident Detection based on Traffic CCTV)

  • 기용걸;김용호
    • 산업융합연구
    • /
    • 제18권3호
    • /
    • pp.53-61
    • /
    • 2020
  • 통행속도는 도로의 교통상황을 측정하고, 교통사고와 같은 돌발상황 발생을 검지하는데 활용되는 중요한 정보이다. 본 논문에서 영상처리 기술을 활용하여 도로구간의 통행속도를 정확하게 측정하는 모델을 제안하였다. 제안 모델은 교통 CCTV 영상에서 차량 객체를 추출하고, 딥러닝 기술 등을 활용하여 차량을 추적하여, 도로구간의 통행속도 및 교통량 등과 같은 교통정보를 수집한다. 또한, 새로운 모델은 데이터 융합기술을 활용하여 정확한 구간통행속도를 수집하여 사용자에게 제공하는 것이 가능하다. 제안 모델을 서울시 오금교에서 현장실험한 결과, 기존 교통정보센터 통행속도 정확도(62.8%)보다 새 모델의 정확도가 높은 것(83.6%)을 확인하였다.

Prediction of Planning Time in Busan Ports-Connected Expressways

  • Kim, Tae-Gon
    • 한국항해항만학회지
    • /
    • 제40권2호
    • /
    • pp.51-56
    • /
    • 2016
  • Expressways mean the primary arterial highways with a high level of efficiency and safety. However, Gyeongbu and Namhae expressways connected with Busan ports are showing travel time delay by increased traffic including the medium/large-sized vehicles of about 20% compared to those of about 13% regardless of the peak periods. This study, thus, intends to analyze lane traffic characteristics in the basic 8-lane segments of the above-mentioned expressways, compute the planning and buffer times based on travel time reliability, find the lane speed showing a higher correlation with planning time between the lane speeds in the basic 8-lane segments, and finally suggest a correlation model for predicting the planning time in expressways.