• 제목/요약/키워드: transverse vibration method

검색결과 267건 처리시간 0.02초

Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation

  • Viswanathan, K.K.;Kim, Kyung Su;Lee, Jang Hyun;Lee, Chang Hyun;Lee, Jae Beom
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.749-765
    • /
    • 2008
  • Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied using spline function approximation techniques. Three different types of thickness variations are considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love's first approximation theory. A system of coupled differential equations on displacement functions are obtained by assuming the displacements in a separable form. Then the displacements are approximated using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several types of layered materials and different boundary conditions are considered. Parametric studies have been made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and type of thickness variation parameter.

On the wave propagations of football game ball after contacting with the player foot

  • Lei Sun;Cancan Wei;Fei Liu;Lijun Wang;Bo Ren
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.529-542
    • /
    • 2023
  • Wave propagation with high transverse deflection could affect the stability of the ball in its trajectory. For low stiffness balls similar to soccer and volleyball balls, the waves are more noticeable in comparison to other balls like ping-pong ball. On the other hand, the soccer balls are under heavy impact loads from shoots and contacting different objects in the field. The maximum recorded speed of a soccer ball after kicking is the 211 km/hr and the average maximum speed is around 112 km/hr. Therefore, in such speeds the aerodynamic forces become important which are directly related to geometrical shape of the ball. In this regard, the wave propagation in soccer ball is examined in the current study using large deformation shear deformable formulations. Classical relations of stress-strain components are taken into consideration along with minimum total energy principle. The final derived relations were solved by using harmonic differential quadrature method. The results are generally presented ion term of phase velocity as function of different influencing parameters of the materials, geometry and mass of the ball.

고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석 (Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory)

  • 유용민;장석윤;이상열
    • 한국전산구조공학회논문집
    • /
    • 제17권1호
    • /
    • pp.21-30
    • /
    • 2004
  • 본 연구에서는 유한요소법을 이용한 채널단면을 갖는 복합재료 적층 구조물의 자유진동을 다룬다. 복합적층 절판구조물에 고차항 판이론을 적용하기 위하여 개발된 유한요소 프로그램은 Lagrangian 및 Hermite 보간함수를 병용하여 면내회전각 자유도를 포함한 절점 당 8개의 자유도를 갖는다. 전단보정계수의 가정을 필요로 하지 않고 전단변형의 3차항 비선형 특성이 고려된 본 논문의 절판 요소는 국부좌표계와 전체좌표계에 대한 좌표변환행렬에 의하여 요소 당 32×32의 국부요소행렬로 구성된다. 본 해석 프로그램의 결과는 기존의 고전적 이론 및 일차항 이론에 의한 문헌 결과와 비교ㆍ분석하였으며, 화이버 보강각도, 길이-두께비, 기하학적 형상 변화 등의 다양한 매개변수 연구를 수행하였다. 본 연구에서는 특히 경계조건 및 길이-두께비 변화에 따라 예측하기 힘든 복잡한 거동을 보이는 복합적층 채널단면 구조물의 자유진동에 대하여 정밀한 고차항 이론 적용에 의한 엄밀 해석의 필요성을 제기하였다.

저 잡음 수중 청음기의 설계 방안 연구 -Ⅰ. 잡음 전달 특성 및 구조 변경 영향 - (Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures -Part Ⅰ. Noise Transfer Characteristics & Effects of Structure Modifications -)

  • 임종인;노용래
    • 한국음향학회지
    • /
    • 제16권2호
    • /
    • pp.10-15
    • /
    • 1997
  • 수중 청음기는 진동하는 물체 위에 설치되어 다양한 외부 잡음 원이 유입되는 환경에 노출되어 있다. 외부 잡음 원으로는 수중 청음기가 설치된 구조물 자체의 진동, 프로펠러 잡음, 그리고 유동 유기 잡음들이 있고, 이들 외부 잡음원은 실제 강도가 상당히 높아서 센서의 정확한 작동에 장애가 되고 있다. 본 연구에서는 외부 잡음에 무관한 고 정밀도, 저 잡음 특성을 갖는 수중 청음기를 개발하기 위하여 유한 요소법(FEM)을 사용하여 잡음 전달 특성의 분석 및 air pocket과 음향 감쇠층의 다양한 조합으로 이루어진 개선된 구조의 수중 청음기를 설계하고, 내 잡음성 평가를 하였다. 그 결과 센서 측면 하단부에 잡음 원이 위치할 경우 가장 큰 잡음 신호로 작용하므로 구조를 변경한 결과 기존 수중 청음기에 비해 59% 이상 내 잡음성을 증진 시켰다.

  • PDF

Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT

  • Boutaleb, Sabrina;Benrahou, Kouider Halim;Bakora, Ahmed;Algarni, Ali;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.191-208
    • /
    • 2019
  • In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton's principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach

  • Eltaher, Mohamed A.;Almalki, Talaal A.;Ahmed, Khaled I.E.;Almitani, Khalid H.
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.39-49
    • /
    • 2019
  • This paper focuses on two main objectives. The first one is to exploit an energy equivalent model and finite element method to evaluate the equivalent Young's modulus of single walled carbon nanotubes (SWCNTs) at any orientation angle by using tensile test. The calculated Young's modulus is validated with published experimental results. The second target is to exploit the finite element simulation to investigate mechanical buckling and natural frequencies of SWCNTs. Energy equivalent model is presented to describe the atomic bonding interactions and their chemical energy with mechanical structural energies. A Program of Nanotube modeler is used to generate a geometry of SWCNTs structure by defining its chirality angle, overall length of nanotube and bond length between two adjacent nodes. SWCNTs are simulated as a frame like structure; the bonds between each two neighboring atoms are treated as isotropic beam members with a uniform circular cross section. Carbon bonds is simulated as a beam and the atoms as nodes. A finite element model using 3D beam elements is built under the environment of ANSYS MAPDL environment to simulate a tensile test and characterize equivalent Young's modulus of whole CNT structure. Numerical results are presented to show critical buckling loads, axial and transverse natural frequencies of SWCNTs with different orientation angles and lengths. The understanding of mechanical behaviors of CNTs are essential in developing such structures due to their great potential in wide range of engineering applications.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.