• Title/Summary/Keyword: transverse cracking

Search Result 117, Processing Time 0.022 seconds

Influence of Concrete Strength on Tension Stiffening (콘크리트강도가 인장증강에 미치는 영향에 관한 연구)

  • Yum, Hwan-Seok;Yun, Sung-Ho;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • This paper describes the results obtained from 11 direct tension tests to explore the influence of concrete strength on tension stiffening behavior in reinforced concrete axial members. Three different concrete compressive strengths, 250, 650, and 900kgf/$\textrm{cm}^2$, were included as a main variable, while the ratio of cover thickness-to-rebar diameter was kept constant to be 2.62 to prevent from splitting cracking. As the results, it was appeared that, as higher concrete strength was used, less tension stiffening effect was resulted, and the residual deformation upon unloading was larger. In addition, the spacing between adjacent transverse cracks became smaller with higher concrete strength. The major cause for those results may be attributed to the fact that nonuniform bond stress concentration at both loaded ends and crack sections becomes severer as higher concrete is used, thereby local bond failure becomes more susceptible. From these findings, it would be said the increase in flexural stiffness resulting from using high-strength concrete will be much smaller than that predicted by the conventional knowledge. Finally, a factor accunting for concrete strength was introduced to take account for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening for the effect of HSC on tension stiffening. This proposed equation predicts well the tension stiffening behavior of these tests.

Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading (동적 충격하중에 의한 미소균열 직조복합구조의 특성)

  • Hur, Hae-Kyu;Kim, Min-Sung;Jung, Jae-Kwon;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF

Effect of loading rate on softening behavior of low-rise structural walls

  • Mo, Y.L.;Rothert, H.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.729-741
    • /
    • 1997
  • Cracked reinforced concrete in compression has been observed to exhibit lower strength and stiffness than uniaxially compressed concrete. The so-called compression softening effect responsible is thought to be related to the degree of transverse cracking and straining present. It significantly affects the strength, ductility and load-deformation response of a concrete element. A number of experimental investigations have been undertaken to determine the degree of softening that occurs, and the factors that affect it. At the same time, a number of diverse analytical models have been proposed by various this behavior. In this paper, the softened truss model thoery for low-rise structural shearwalls is employed using the principle of the stress and strain transformations. Using this theory the softening parameters for the concrete struts proposed by Hsu and Belarbi as well as by Vecchio and Collins are examined by 51 test shearwalls available in literature. It is found that the experimental shear strengths and ductilities of the walls under static loads are, in average, very close to the theoretical values; however, the experiment shear strengths and ductilities of the walls under dynamic loads with a low (0.2 Hz) frequency are generally less than the theoretical values.

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco;Navarro-Gregori, Juan;Leiva, Gabriel;Serna, Pedro
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.491-503
    • /
    • 2020
  • This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

Experimental and numerical studies on seismic performance of hollow RC bridge columns

  • Han, Qiang;Zhou, Yulong;Du, Xiuli;Huang, Chao;Lee, George C.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2014
  • To investigate the seismic performance and to obtain quantitative parameters for the requirement of performance-based bridge seismic design approach, 12 reinforced concrete (RC) hollow rectangular bridge column specimens were tested under constant axial load and cyclic bending. Parametric study is carried out on axial load ratio, aspect ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. The damage states of these column specimens were related to engineering limit states to determine the quantitative criteria of performance-based bridge seismic design. The hysteretic behavior of bridge column specimens was simulated based on the fiber model in OpenSees program and the results of the force-displacement hysteretic curves were well agreed with the experimental results. The damage states of residual cracking, cover spalling, and core crushing could be well related to engineering limit states, such as longitudinal tensile strains of reinforcement or compressive strains of concrete, etc. using cumulative probability curves. The ductility coefficient varying from 3.71 to 8.29, and the equivalent viscous damping ratio varying from 0.19 to 0.31 could meet the requirements of seismic design.

Effect of Cu on Hot Ductility Behavior of Low Carbon Steel (저탄소강의 열간 연성 거동에 미치는 Cu의 영향)

  • Son, Kwang Suk;Park, Tae Eun;Park, Byung-Ho;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • Cu as a tramp element has been reported to encourage transverse cracking upon straightening operation during continuous casting or mini-mill processing. Therefore, the hot workability of steels containing Cu should be investigated. The purpose of the present study was to examine the effect of Cu contents on the hot ductility of low carbon steels by using hot compression test. Hot compression test was carried out using a Gleeble. The specimens were heated to $1300^{\circ}C$ for solution treatment and then held for 300s before cooling at a rate of $1^{\circ}C/s$ to test temperatures in the range of $650{\sim}1150^{\circ}C$ ($50^{\circ}C$ intervals) with strain rate of $5{\times}10^{-3}/s$. In Cu containing steels, the hot ductility was decreased with increasing Cu content at high temperature region which is to be attributed to copper enriched phase formed at scale/steel interface, and low hot ductility with increasing Cu content at low temperature region is attributable to the strengthening of matrix by the formation of ${\varepsilon}-Cu$. The width of ductility trough region was decreased with increasing Cu content.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.

Shear resistance of steel-concrete-steel deep beams with bidirectional webs

  • Guo, Yu-Tao;Nie, Xin;Fan, Jian-Sheng;Tao, Mu-Xuan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.299-313
    • /
    • 2022
  • Steel-concrete-steel composite structures with bidirectional webs (SCSBWs) are used in large-scale projects and exhibit good mechanical performances and constructional efficiency. The shear behaviors of SCSBW deep beam members in key joints or in locations subjected to concentrated forces are of concern in design. To address this issue, experimental program is investigated to examine the deep-beam shear behaviors of SCSBWs, in which the cracking process and force transfer mechanism are revealed. Compared with the previously proposed truss model, it is found that a strut-and-tie model is more suitable for describing the shear mechanism of SCSBW deep beams with a short span and sparse transverse webs. According to the experimental analyses, a new model is proposed to predict the shear capacities of SCSBW deep beams. This model uses strut-and-tie concept and introduces web shear and dowel action to consider the coupled multi mechanisms. A stress decomposition method is used to distinguish the contributions of different shear-transferring paths. Based on case studies, a simplified model is further developed, and the explicit solution is derived for design efficiency. The proposed models are verified using experimental data, which are proven to have good accuracy and efficiency and to be suitable for practical application.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.