• Title/Summary/Keyword: transtensional tectonics

Search Result 3, Processing Time 0.021 seconds

Tectonic features along the South Scotia Ridge, Antarctica (남극해 남스코시아 해령 주변의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Nam, Sang-Heon;Park, Min-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.139-144
    • /
    • 2005
  • Multichannel seismic survey has conducied along the South Scotia Ridge which is located in the northern part of Weddell sea, Antarctic sea, The South Scotia Ridge is part of continental crust extended from Antarctic Peninsula. It borders on Oceanic plates, the Scotia sea plate and Powell basin. Transtensional tectonics along the sinistral transform fault plate boundary led to the creation of the present tectonic geomorphology of the South Scotia Ridge. The fan-shaped deposits with angular unconformities in the central depression is interpreted as a divergent tectonic movement along the ridge.

  • PDF

Tectonic Features along the South Scotia Ridge, Antarctica (남극해 남스코시아 해령 주변의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Nam, Sang-Heon;Park, Min-Kyu
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.215-219
    • /
    • 2005
  • Multichannel seismic survey has conducted along the South Scotia Ridge which is located in the northern part of Weddell sea, Antarctic sea. The South Scotia Ridge is part of continental crust extended from Antarctic Peninsula. It borders on Oceanic plates, the Scotia sea plate and Powell basin. Transtensional tectonics along the sinistral transform fault plate boundary led to the creation of the present tectonic geomorphology of the South Scotia Ridge. The fan-shaped deposits with angular unconformities in the central depression is interpreted as a divergent tectonic movement along the ridge.

  • PDF

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF