• 제목/요약/키워드: transportation optimization

검색결과 439건 처리시간 0.027초

Conceptual Design Optimization of Tensairity Girder Using Variable Complexity Modeling Method

  • Yin, Shi;Zhu, Ming;Liang, Haoquan;Zhao, Da
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2016
  • Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.

인더스트리얼 캐리어를 위한 선대운영의 최적화에 관한 연구 (A Study on the Optimization of Fleet Operation for Industrial Carriers)

  • 김시화;곽민석
    • 한국항해학회지
    • /
    • 제22권4호
    • /
    • pp.1-14
    • /
    • 1998
  • There are three basic modes of operation of ships: liner, tramp and industrial operations. Industrial operations, where the owner of the cargo, i.e. the industrial carrier controls the ships, abound in the shipment of bulk commodities, such as oil, chemicals and ores. Industrial carriers strive to minimize the shipping cost of their cargoes. This paper is concerned with the operational optimization problem of a fleet owned by major international oil company. The major oil company is a holding corporation for a group of oil producing, transporting, refining, and marketing companies located in various countries throughout the world. The operational optimization problem of the fleet is divided into two-phases. The front end corresponds to the optimization of transporting crude oil, product mix, and the distribution of product oil to meet market demand. The back end tackles the operational optimization problem of the fleet to meet the transportation demand derived from the front end. A case study is carried out with the H major oil company problem composed by reflecting the practices of an international major oil company. The results are summarized and examined in the point of optimization for the total operation of the H major oil company and the operational optimization problem of the fleet. The paper concludes with the remark that the results of the study might be useful and applicable in practices of these related decision problems.

  • PDF

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Seismic performance analysis of steel-brace RC frame using topology optimization

  • Qiao, Shengfang;Liang, Huqing;Tang, Mengxiong;Wang, Wanying;Hu, Hesong
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.417-432
    • /
    • 2019
  • Seismic performance analysis of steel-brace reinforced concrete (RC) frame using topology optimization in highly seismic region was discussed in this research. Topology optimization based on truss-like material model was used, which was to minimum volume in full-stress method. Optimized bracing systems of low-rise, mid-rise and high-rise RC frames were established, and optimized bracing systems of substructure were also gained under different constraint conditions. Thereafter, different structure models based on optimized bracing systems were proposed and applied. Last, structural strength, structural stiffness, structural ductility, collapse resistant capacity, collapse probability and demolition probability were studied. Moreover, the brace buckling was discussed. The results show that bracing system of RC frame could be derived using topology optimization, and bracing system based on truss-like model could help to resolve numerical instabilities. Bracing system of topology optimization was more effective to enhance structural stiffness and strength, especially in mid-rise and high-rise frames. Moreover, bracing system of topology optimization contributes to increase collapse resistant capacity, as well as reduces collapse probability and accumulated demolition probability. However, brace buckling might weaken beneficial effects.

고비용 블랙박스 함수의 RBF기반 근사 최적화 기법 (A Method for RBF-based Approximate Optimization of Expensive Black Box Functions)

  • 박상근
    • 한국CDE학회논문집
    • /
    • 제21권4호
    • /
    • pp.443-452
    • /
    • 2016
  • This paper proposes a method for expensive black box optimization using radial basis functions (RBFs). The proposed algorithm is a computational strategy that uses a RBF model approximating the expensive black box function to predict an optimum. First, a RBF-based approximation technique is introduced and a sampling plan for estimation of the black box function is described. Then the proposed algorithm is explained, which presents the pseudo-codes for implementation and the detailed description of each step performed in the optimization process. In addition, numerical experiments will be given to analyze the performance of the proposed algorithm, by investigating computation accuracy, number of function evaluations, and convergence history. Finally, geometric distance problem as application example will be also presented for showing the algorithm applicability to different engineering problems.

상호작용 다목적 최적화 방법론을 이용한 전시 탄약 할당 모형 (Ammunition Allocation Model using an Interactive Multi-objective Optimization(MOO) Method)

  • 정민섭;박명섭
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.513-524
    • /
    • 2006
  • The ammunition allocation problem is a Multi-objective optimization(MOO) problem, maximizing fill-rate of multiple user troops and minimizing transportation time. Recent studies attempted to solve this problem by the prior preference articulation approach such as goal programming. They require that all the preference information of decision makers(DM) should be extracted prior to solving the problem. However, the prior preference information is difficult to implement properly in a rapidly changing state of war. Moreover they have some limitations such as heavy cognitive effort required to DM. This paper proposes a new ammunition allocation model based on more reasonable assumptions and uses an interactive MOO method to the ammunition allocation problem to overcome the limitations mentioned above. In particular, this article uses the GDF procedure, one of the well-known interactive optimization methods in the MOO liter-ature, in solving the ammunition allocation problem.

  • PDF

Topology optimization of reinforced concrete structure using composite truss-like model

  • Yang, Zhiyi;Zhou, Kemin;Qiao, Shengfang
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.79-85
    • /
    • 2018
  • Topology optimization of steel and concrete composite based on truss-like material model is studied in this paper. First, the initial design domain is filled with concrete, and the steel is distributed in it. The problem of topology optimization is to minimize the volume of steel material and solved by full stress method. Then the optimized steel and concrete composite truss-like continuum is obtained. Finally, the distribution of steel material is determined based on the optimized truss-like continuum. Several numerical results indicate the numerical instability and rough boundary are settled. And more details of manufacture and construction can be presented based on the truss-like material model. Hence, the truss-like material model of steel and concrete is efficient to establish the distribution of steel material in concrete.

전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구 (The Research on the Modeling and Parameter Optimization of the EV Battery)

  • 김일송
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

수치해석을 활용한 승강장 바닥배기 시스템 최적화 연구 (Study on the optimal design of floor exhaust system using computational fluid dynamics for subway platform)

  • 남궁형규;박세찬;김민해;김수연;권순박
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.443-449
    • /
    • 2017
  • 최근 국내 도시철도 지하역사에는 승강장 안전문의 설치로 인한 승강장의 급 배기 불균형이 일어나며, 이러한 불균형은 승강장 내 오염물질 축적과 환기부족에 의한 쾌적성 저하를 일으키는 원인이 된다. 본 연구에서는 시뮬레이션 유동해석 프로그램을 이용하여 지하역사 바닥배기 시스템의 최적화 설계를 하고, 제작된 바닥배기 시스템의 미세먼지 제거 성능을 실험으로 검증하였다. 바닥배기 시스템의 시뮬레이션 유동해석은 CFX 17.0 프로그램을 이용하였으며, HEEDS를 최적화 소프트웨어로 적용하였다. 3차에 걸쳐 이루어진 최적화 결과, 약 430 Pa의 차압과 61%의 미세먼지 제거 성능을 갖는 전체높이 1.78 m의 바닥배기 시스템이 도출되었다. 최적화 설계에 따라 실규모로 제작된 바닥배기 시스템을 이용하여 미세먼지 집진 성능 실험을 실시하였으며, 약 65%의 집진효율을 보임으로써 수치해석을 통해 도출된 최적설계 결과와 유사한 수준임을 검증하였다. 결과적으로 최적화 프로그램을 활용한 바닥배기 시스템의 설계가 급배기 불균형을 갖고 있는 지하역사 승강장에 적용 가능함을 확인하였으며, 설계된 바닥배기 시스템이 공간상의 제약으로 추가적인 배기설비 설치가 어려운 기존 지하 역사에서 배기개선 및 미세먼지 제거에 효과적으로 활용될 수 있을 것으로 판단된다.

단일할당 복합운송 허브 네트워크 설계 모형 개발 (A Single Allocation Hub Network Design Model for Intermodal Freight Transportation)

  • 김동규;강성철;박창호;고승영
    • 대한교통학회지
    • /
    • 제27권1호
    • /
    • pp.129-141
    • /
    • 2009
  • 복합운송은 두 개 이상의 수송수단을 이용하는 기점에서 종점까지의 수송으로 정의될 수 있다. 복합운송이 허브 네트워크에 활용되면 집화된 수송량이 보다 적절한 수단들과 기술들에 의해 수송되기 때문에 네트워크 효율성이 제고될 수 있다. 이러한 장점에도 불구하고 문제의 복잡성 등으로 인하여 복합운송 허브 네트워크 설계 문제에 관한 연구는 그동안 활발하게 수행되지 않았다. 본 연구의 목적은 단일할당 전략을 이용하는 복합운송 허브 네트워크 설계 최적화 모형을 개발하는 것이다. 본 연구에서 개발된 모형은 수송비용, 재고비용, 서비스지체비용 등 복합운송 허브 네트워크에서 발생하는 다양한 비용요소들을 고려하는 한편, 운행빈도 변수를 사용함으로써 수송량 집화에 따른 수송 규모의 경제 효과를 내생적으로 결정할 수 있어 복합운송을 활용하는 실제 허브 네트워크의 특성들을 잘 반영할 수 있다. 개발된 모형은 비선형 정수계획 문제의 복잡한 구조를 가지고 있기 때문에, 본 연구에서는 모형에 대한 해석적 연구를 통하여 모형을 단순화함으로써 향후 알고리즘을 개발하기 위한 이론적 출발점을 제시한다. 본 연구는 복합운송 허브 네트워크의 설계뿐만 아니라 기존의 물류시스템 평가에도 기여할 수 있을 것으로 사료된다.