• Title/Summary/Keyword: transport vehicle

Search Result 1,083, Processing Time 0.027 seconds

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.

A Study on the Safety of Hydrogen Embrittlement of Materials Used for Hydrogen Electric Vehicles (수소전기차 사용소재의 수소취성 안전성에 관한 고찰)

  • HYEONJIN JEON;WONJONG JEONG;SUNGGOO CHO;HOSIK LEE;HYUNWOO LEE;SEONGWOO CHO;ILHO KANG;NAMYONG KIM;HO JIN RYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.761-768
    • /
    • 2022
  • In the hope of realizing carbon neutrality, Korea has established the goal of expanding the supply of hydrogen electric vehicles through a roadmap to revitalize the hydrogen economy. A prerequisite for successful supply expansion is securing the safety of hydrogen electric vehicles. Certain parts, such as the hydrogen transport pipe and tank, in hydrogen electric vehicles are exposed to high-pressure hydrogen gas over long periods of time, so the hydrogen enters the grain boundary of material, resulting in a degradation of the parts referred to as hydrogen embrittlement. In addition, since the safety of parts utilizing hydrogen varies depending on the type of material used and its environmental characteristics, the necessity for the enactment of a hydrogen embrittlement regulation has emerged and is still being discussed as a Global Technical Regulation (GTR). In this paper, we analyze a hydrogen compatibility material evaluation method discussed in GTR and present a direction for the development of Korean-type hydrogen compatibility material evaluation methods.

Proposed Message Transit Buffer Management Model for Nodes in Vehicular Delay-Tolerant Network

  • Gballou Yao, Theophile;Kimou Kouadio, Prosper;Tiecoura, Yves;Toure Kidjegbo, Augustin
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.153-163
    • /
    • 2023
  • This study is situated in the context of intelligent transport systems, where in-vehicle devices assist drivers to avoid accidents and therefore improve road safety. The vehicles present in a given area form an ad' hoc network of vehicles called vehicular ad' hoc network. In this type of network, the nodes are mobile vehicles and the messages exchanged are messages to warn about obstacles that may hinder the correct driving. Node mobilities make it impossible for inter-node communication to be end-to-end. Recognizing this characteristic has led to delay-tolerant vehicular networks. Embedded devices have small buffers (memory) to hold messages that a node needs to transmit when no other node is within its visibility range for transmission. The performance of a vehicular delay-tolerant network is closely tied to the successful management of the nodes' transit buffer. In this paper, we propose a message transit buffer management model for nodes in vehicular delay tolerant networks. This model consists in setting up, on the one hand, a policy of dropping messages from the buffer when the buffer is full and must receive a new message. This drop policy is based on the concept of intermediate node to destination, queues and priority class of service. It is also based on the properties of the message (size, weight, number of hops, number of replications, remaining time-to-live, etc.). On the other hand, the model defines the policy for selecting the message to be transmitted. The proposed model was evaluated with the ONE opportunistic network simulator based on a 4000m x 4000m area of downtown Bouaké in Côte d'Ivoire. The map data were imported using the Open Street Map tool. The results obtained show that our model improves the delivery ratio of security alert messages, reduces their delivery delay and network overload compared to the existing model. This improvement in communication within a network of vehicles can contribute to the improvement of road safety.

Prediction of Traffic Speed in a Container Terminal Using Yard Tractor Operation Data (내부트럭 운영 정보를 이용한 컨테이너 터미널 내 교통 속도예측)

  • Kim, Taekwang;Heo, Gyoungyoung;Lee, Hoon;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • An important operational goal of a container terminal is to maximize the efficiency of the operation of quay cranes (QCs) that load and/or unload containers onto and from vessels. While the maximization of the efficiency of the QC operation requires minimizing the delay of yard tractors (YT) that transport containers between the storage yard and QCs, the delay is often inevitable because of traffic congestion. In this paper, we propose a method for learning a model that predicts traffic speed in a terminal using only YT operation data, even though the YT traffic is mixed with that of external trucks. Without any information on external truck traffic, we could still make a reasonable traffic forecast because the YT operation data contains information on the YT routes in the near future. The results of simulation experiments showed that the model learned by the proposed method could predict traffic speed with significant accuracy.

Characterizing Regional Ozone Concentration Changes Due to the Adoption of Eco-Friendly Vehicles in South Korea (친환경 자동차 도입에 따른 지역별 오존 농도 변화 특성 분석)

  • Chaeyeong Yang;Wonbae Jeon;DongJin Kim;Jaehyeong Park;Hyeonsik Choe;Jeonghyeok Mun
    • Journal of Environmental Science International
    • /
    • v.32 no.9
    • /
    • pp.613-626
    • /
    • 2023
  • This study investigates the impact of increased adoption of eco-friendly vehicles on ozone (O3) concentrations in South Korea, utilizing the community multiscale air quality (CMAQ) model. In the summer of 2017 (June-August), we conducted two experiments: a BASE experiment, representing baseline emissions, and an R_30 experiment, involving a 30% emission reduction due to eco-friendly vehicles. The contrast between these experiments reveals that, while most air pollutants decreased with reduced vehicle emissions, O3 concentrations surprisingly increased (up to 2.1 parts per billion) across South Korea. A further examination of O3 concentration changes was conducted by analyzing daytime and nighttime variations as well as wind direction. During the daytime, O3 concentrations notably rose near metropolitan areas due to reduced O3 titration (O3 + NO → O2 + NO2) resulting from emission reductions. At nighttime, O3 concentrations exhibited a greater increase, attributed to the transport of daytime-generated O3 to rural regions. Notably, the impact of reduced emissions in metropolitan areas on O3 concentrations in downwind areas varied depending on the prevailing wind direction. These findings highlight that the promotion of eco-friendly vehicles, though effective in lowering certain air pollutants, might not directly influence O3 concentrations. This study underscores the need to comprehensively understand the complicated chemistry of O3 to develop effective strategies for air quality management.

Exercising The Traditional Four-Step Transportation Model Using Simplified Transport Network of Mandalay City in Myanmar (미얀마 만달레이시의 단순화된 교통망을 이용한 전통적인 4단계 교통 모델에 관한 연구)

  • Wut Yee Lwin;Byoung-Jo Yoon;Sun-Min Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.257-269
    • /
    • 2024
  • Purpose: The purpose of this study is to explain the pivotal role of the travel forecasting process in urban transportation planning. This study emphasizes the use of travel forecasting models to anticipate future traffic. Method: This study examines the methodology used in urban travel demand modeling within transportation planning, specifically focusing on the Urban Transportation Modeling System (UTMS). UTMS is designed to predict various aspects of urban transportation, including quantities, temporal patterns, origin-destination pairs, modal preferences, and optimal routes in metropolitan areas. By analyzing UTMS and its operational framework, this research aims to enhance an understanding of contemporary urban travel demand modeling practices and their implications for transportation planning and urban mobility management. Result: The result of this study provides a nuanced understanding of travel dynamics, emphasizing the influence of variables such as average income, household size, and vehicle ownership on travel patterns. Furthermore, the attraction model highlights specific areas of significance, elucidating the role of retail locations, non-retail areas, and other locales in shaping the observed dynamics of transportation. Conclusion: The study methodically addressed urban travel dynamics in a four-ward area, employing a comprehensive modeling approach involving trip generation, attraction, distribution, modal split, and assignment. The findings, such as the prevalence of motorbikes as the primary mode of transportation and the impact of adjusted traffic patterns on reduced travel times, offer valuable insights for urban planners and policymakers in optimizing transportation networks. These insights can inform strategic decisions to enhance efficiency and sustainability in urban mobility planning.

Ergonomic Approach through Process Analysis of Delivery Work (택배 배송 작업의 공정분석을 통한 인간공학적 접근 방안)

  • Sejung Lee;Sangeun Jin;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • In response to the COVID-19 pandemic, the logistics industry in Korea has rapidly been expanding, with offline demand concentrating on online platforms owing to the development of digital infrastructure. This has increased the workload of courier drivers considerably, along with labor intensity. A delivery driver died recently from overwork due to the continuous increase in delivery volume, which raises social concerns. Delivery drivers work long hours, (over 12 hours) and are greatly affected by weather conditions, such as snow, rain, heat waves, and cold waves. In addition, they lack a fixed workplace; perform atypical work handling workpieces of various sizes, weights, and shapes; and spend a large amount of time driving as part of their work. This work involves a high level of tension and requires attention and concentration. Despite the frequency of industrial accidents in the courier industry, studies on safety and health to quantitatively analyze and systematize the work of courier workers are very scarce. Therefore, to define the work process necessary for investigating the harmful factors in delivery service and the work analysis, this study conducted interviews and on-site surveys to analyze the unit work of the delivery service by targeting delivery workers. In other words, a framework of unit work for work analysis was presented to enable research and analysis by considering the aforementioned characteristics of the courier industry. The process was broadly divided into work, transport, storage, delay, and inspection. Work was divided into loading, sorting, unloading, and door subcategories, and transportation was divided into vehicle, cart, and walking subcategories as well as 10 small processes. Moreover, 22 unit works were again drawn by conducting field surveys and interviews. The risk of unit work derived from this study was ergonomically evaluated, and the ergonomic analysis revealed that uploading and transportation were the most dangerous. The results of this study could be used as basic data for preventing industrial accidents among courier workers, whose work has increased with the logistics volume and the development of the logistics industry.

UAM Traffic Flow Management Based on Milestone in Collaborative Decision-Making (협력적 의사결정체계(CDM) 마일스톤 기반 도심항공교통(UAM) 흐름관리)

  • Do-hyun Kim;Hyo-seok Chang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.436-441
    • /
    • 2024
  • Urban air mobility (UAM) is an innovative air traffic management system that utilizes electric vertical take off and landing aircraft(eVTOL) to transport passengers and cargo in urban areas. The corridor can be defined as the airspace that the vehicle operates in and must be collaboratively managed. For the stable operation of UAM, it is essential to have strategic separation and a collaborative decision-making(CDM) system for cooperation and coordination among stakeholders. This study examines the application of time-based milestones from traditional air traffic flow management to the UAM system to ensure safe traffic volume and optimize air traffic flow. For traffic flow management, the milestone time information is categorized into a total of 13 key milestone time indicators based on the UAM movement status, and the sharing entities providing each time indicator and the flow of milestones are defined. Emphasizing the need for a CDM to balance UAM traffic and capacity, sharing and managing milestone information among stakeholders is expected to improve UAM aircraft departure flow and enhance operational efficiency.

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

Study on Ohmic Resistance of Polymer Electrolyte Fuel Cells Using Current Interruption Method (전류차단법을 이용한 고분자전해질 연료전지의 오믹 저항 연구)

  • Ji, Sanghoon;Hwang, Yong-Sheen;Lee, Yoon Ho;Park, Taehyun;Paek, Jun Yeol;Chang, Ikwhang;Cha, Suk Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • The current interruption method is considered to be an efficient way of measuring the resistance of a fuel cell. In this study, the ohmic area specific resistances (ASRs) of polymer electrolyte fuel cells with different types of bipolar plates were evaluated using the current interruption method. The ohmic ASRs of both a fuel cell with graphite bipolar plates and a fuel cell with graphite foil-based assembled bipolar plates decreased as the current density increased. On the other hand, with increasing cell temperature, the ohmic ASRs of a fuel cell with graphite bipolar plates were decreased by a reduction in the proton transport resistance through the membrane, and the ohmic ASRs of a fuel cell with graphite foil-based assembled bipolar plates were increased by the differences in thermal expansion between different components of the bipolar plates.