• Title/Summary/Keyword: transport number

Search Result 1,349, Processing Time 0.028 seconds

Exploration on new model of selectively preferential sorption-facilitated transport with fixed site carriers

  • Congjie, Gao;Liguang, Wu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.152-154
    • /
    • 2004
  • A new model of selectively preferential sorption-facilitated transport with fixed site carriers was advanced in this paper. A number of experiments were arranged to demonstrate the ideal above. Preliminary results were obtained from the experiments, and shown the model was applicable for many membrane processes, such as RO, ED, gas separation and liquid membranes etc.

  • PDF

Effect of accelerational perturbations on physical vapor transport crystal growth under microgravity environments

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kwon, Moo-Hyun;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.203-209
    • /
    • 2006
  • For $P_B=50,\;{\Delta}T=10K$, Ar=5, Pr=2.36, Le=0.015, Pe=1.26, Cv=1.11, the intensity of solutal convection (solutal Grashof number $Grs=3.44x10^4$) is greater than that of thermal convection (thermal Grashof number $Grt=1.81x10^3$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A($Hg_2Cl_2$) and B(He). With increasing the partial pressure of component B from 10 up to 200 Torr, the rate is decreased exponentially. The convective transport decreases with lower g level and is changed to the diffusive mode at 0.1 $g_0$. In other words, for regions in which the g level is 0.1 $g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than 0.1 $g_0$ can be adequate to ensure purely diffusive transport.

Configuration of ACK Trees for Multicast Transport Protocols

  • Koh, Seok-Joo;Kim, Eun-Sook;Park, Ju-Young;Kang, Shin-Gak;Park, Ki-Shik;Park, Chee-Hang
    • ETRI Journal
    • /
    • v.23 no.3
    • /
    • pp.111-120
    • /
    • 2001
  • For scalable multicast transport, one of the promising approaches is to employ a control tree known as acknowledgement (ACK) tree which can be used to convey information on reliability and session status from receivers to a root sender. The existing tree configuration has focused on a 'bottom-up' scheme in which ACK trees grow from leaf receivers toward a root sender. This paper proposes an alternative 'top-down' configuration where an ACK tree begins at the root sender and gradually expands by including non-tree nodes into the tree in a stepwise manner. The proposed scheme is simple and practical to implement along with multicast transport protocols. It is also employed as a tree configuration in the Enhanced Communications Transport Protocol, which has been standardized in the ITU-T and ISO/IEC JTC1. From experimental simulations, we see that the top-down scheme provides advantages over the existing bottom-up one in terms of the number of control messages required for tree configuration and the number of tree levels.

  • PDF

Heat transfer study of double diffusive natural convection in a two-dimensional enclosure at different aspect ratios and thermal Grashof number during the physical vapor transport of mercurous bromide (Hg2Br2): Part I. Heat transfer

  • Ha, Sung Ho;Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • A computational study of combined thermal and solutal convection (double diffusive convection) in a sealed crystal growth reactor is presented, based on a two-dimensional numerical analysis of the nonlinear and strongly coupled partial differential equations and their associated boundary conditions. The average Nusselt numbers for the source regions are greater than those at the crystal regions for 9.73 × 103 ≤ Grt ≤ 6.22 × 105. The average Nusselt numbers for the source regions varies linearly and increases directly with the thermal Grashof number form 9.73 × 103 ≤ Grt ≤ 6.22 × 105 for aspect ratio, Ar (transport length-to-width) = 1 and 2. Additionally, the average Nusselt numbers for the crystal regions at Ar = 1 are much greater than those at Ar = 2. Also, the occurrence of one unicellular flow structure is caused by both the thermal and solutal convection, which is inherent during the physical vapor transport of Hg2Br2. When the aspect ratio of the enclosure increases, the fluid movement is hindered and results in the decrease of thermal buoyancy force.

Capacity Analysis of UWB Networks in Three-Dimensional Space

  • Cai, Lin X.;Cai, Lin;Shen, Xuemin;Mark, Jon W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.287-296
    • /
    • 2009
  • Although asymptotic bounds of wireless network capacity have been heavily pursued, the answers to the following questions are still critical for network planning, protocol and architecture design: Given a three-dimensional (3D) network space with the number of active users randomly located in the space and using the wireless communication technology, what are the expected per-flow throughput, network capacity, and network transport capacity? In addition, how can the protocol parameters be tuned to enhance network performance? In this paper, we focus on the ultra wideband (UWB) based wireless personal area networks (WPANs) and provide answers to these questions, considering the salient features of UWB communications, i.e., low transmission/interference power level, accurate ranging capability, etc. Specifically, we demonstrate how to explore the spatial multiplexing gain of UWB networks by allowing appropriate concurrent transmissions. Given 3D space and the number of active users, we derive the expected number of concurrent transmissions, network capacity and transport capacity of the UWB network. The results reveal the main factors affecting network (transport) capacity, and how to determine the best protocol parameters, e.g., exclusive region size, in order to maximize the capacity. Extensive simulation results are given to validate the analytical results.

Studies on Nusselt and Sherwood number for diffusion-advective convection during physical vapor transport of Hg2Br2

  • Kim, Geug Tae;Kwon, Moo Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.127-136
    • /
    • 2021
  • This paper is dedicated to numerical simulation for diffusion-advective convection in a square cavity during physical vapor transport of Hg2Br2. Flow characteristics of the temperature difference between the source and crystal regions, 50℃ (300℃ → 250℃), partial pressures of component argon of 20 Torr and 100 Torr are investigated and presented as velocity vectors and streamlines, isotherms and iso-mass concentrations contours. Moreover, alterations of average Nusselt and average Sherwood numbers with (a) the source and crystal regions, (b) the pressures of component argon of 20 Torr and 100 Torr are analyzed and addressed in details. Both average Nusselt and average Sherwood numbers are seen to decrease with the increasing values of the partial pressures of component argon. Also, it is found that for the two different partial pressures of component argon, average Nusselt numbers at the source region are greater than at the crystal region, and inversely, average Sherwood numbers at the crystal region are greater than the source region by a factor of 3.

Numerical Analysis for the Effect of Spacer in Reverse Electrodialysis (역전기투석 장치 내 스페이서의 영향에 관한 수치해석적 연구)

  • Shin, Dong-Woo;Kim, Hong-Keun;Kim, Tae-Hwan;Park, Jong-Soo;Jeon, Dong Hyup
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, the effects of spacer and variation of spacer height in reverse electrodialysis (RED) on the seawater and ion transport were investigated. A three-dimensional computational fluid dynamics (CFD) simulation for a hexagonal spacer was constructed. The results showed that the swirl in the channel and ion transport rate to the membrane were enhanced at higher Reynolds number, on the other hand, pressure difference between the inlet and outlet was increased. Moreover thicker spacer increased Power number and Sherwood number.

A Study on Improvement of the Logistic System in Social Commerce using Simulation (시뮬레이션을 활용한 소셜커머스의 물류시스템 개선방안 연구)

  • Gu, Seung-Hwan;Noh, Seung-Min;Jang, Seong-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.25-33
    • /
    • 2013
  • The research focuses on the method to improve the Logistics considering investigating the present state of the fast growing social commerce. The improving Logistics is the jointed transport system, which proposes the concept of the packaged delivery for customers in same area and the condition-specific benefits as the transport cost and delay period. Customers in this system will obtain the advantage as the decrease of transport cost and social commerce companies will make the effect about growing the number of customer and the sales by the lowest price in the online markets. There are 7 scenarios for simulation. The performance assessment of the results from simulation is carried out by total number of orders, finished number of orders, sales, delivery times, delivery cost, earlier rate of delivery, and fluctuation of number of wrong delivery. The results of the research show that the total number of orders, finished number of orders and sales are increased, while the times and cost of delivery are decreased.

Sensory Adaptation in Polar Auxin Transport System to Naphtylphthalamic Acid in Corn Coleoptile Segments (옥수수(Zea mays L.) 자엽초 절편에서 Naphtylphthalamic Acid에 대한 오옥신 이동계의 감지적응)

  • 윤인선
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.317-323
    • /
    • 1991
  • Partial recovery in auxin transport capacity from inhibition by N-naphthylphthalamic acid (NPA) was observed when corn coleoptile segments were subjected to a prolonged NPA treatment. Kinetic data indicated that the recovery time is a function of the concentration of NPA applied. Desensitization to NPA was also seen in tissue slices where NPA increased net uptake of auxin, indicating that the apparant adaptation in the auxin transport system did not results possibly from auxin accumulated during transport inhibition. Studies on in vitro binding of NPA to membrane vesicles isolated from the coleoptile indicated that preincubation of the tissue with NPA resulted in the reduced binding activity. Scatchard analysis of the data indicated that this was due to decreases in the number of NPA binding sites. The possibility of causal relationship of modified NPA receptors to the sensory adaptation in auxin transport observed in coleoptile segments will be discussed.

  • PDF

Fully Solution-Processed Green Organic Light-Emitting Diodes Using the Optimized Electron Transport Layers (최적화된 전자 수송층을 활용한 완전한 용액공정 기반 녹색 유기발광다이오드)

  • Han, Joo Won;Kim, Yong Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.486-489
    • /
    • 2018
  • Solution-processed organic light-emitting diodes (OLEDs) have the advantages of low cost, fast fabrication, and large-area devices. However, most studies on solution-processed OLEDs have mainly focused on solution-processable hole transporting materials or emissive materials. Here, we report fully solution-processed green OLEDs including hole/electron transport layers and emissive layers. The electrical and optical properties of OLEDs based on solution-processed TPBi (2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) as the electron transport layer were investigated with respect to the spin speed and the number of layers. The performance of OLEDs with solution-processed TPBi exhibits a power efficiency of 9.4 lm/W. We believe that the solution-processed electron transport layers can contribute to the development of efficient fully solution-processed multilayered OLEDs.