• Title/Summary/Keyword: transport media

Search Result 503, Processing Time 0.019 seconds

Simulation for Automatic Diagnosis of Defect in Media Transport System (유연매체 이송 시스템의 고장 진단을 위한 Simulation)

  • Lee, Nam-Hoon;Lyu, Sang-Heon;Koo, J.C.;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.564-568
    • /
    • 2005
  • As functional requirements of automatic office machines like printers, ATMs, copying machines are on a trend for the higher speed and precision, extensive technical advances are being developed and implemented in the industry. Media transport system is a device to convey a sheet of paper in ATMs and printers. The stability of media transport system is a matter of concern as their operating throughput rapidly increases. And defects of belts or rollers in a transport system directly affect the level of stability of the system. Therefore an automatic diagnostic system for predicting various defects is necessary for the stable operation of the media transport system. A simulation based on multi-body dynamics has been done for a feasibility study of a system design for the defect anticipation.

  • PDF

미생물의 토양 투과성에 영향을 미치는 미생물 표면 및 용액 특성

  • 김용미;류두현;김호영;서성원;정남희;안병구;박준석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.319-322
    • /
    • 2002
  • The bacterial transport in soil media was studied. Nonionic surfactants, enhanced the bacterial transports in soil media. The transport rate in soil column was increased by increasing the number of ethylene oxide in polyoxyethylene oxide surfactants. Ionic strength of solution affected the microbial transport characteristics in soil. The hydrophobicity of cell surface was proved that one of important characteristics on the bacterial transport in soil media.

  • PDF

Efficient Media Synchronization Mechanism for SVC Video Transport over IP Networks

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.441-450
    • /
    • 2008
  • The scalable extension of H.264, known as scalable video coding (SVC) has been the main focus of the Joint Video Team's work and was finalized at the end of 2007. Synchronization between media is an important aspect in the design of a scalable video streaming system. This paper proposes an efficient media synchronization mechanism for SVC video transport over IP networks. To support synchronization between video and audio bitstreams transported over IP networks, a real-time transport protocol/RTP control protocol (RTP/RTCP) suite is usually employed. To provide an efficient mechanism for media synchronization between SVC video and audio, we suggest an efficient RTP packetization mode for inter-layer synchronization within SVC video and propose a computationally efficient RTCP packet processing method for inter-media synchronization. By adopting the computationally simple RTCP packet processing, we do not need to process every RTCP sender report packet for inter-media synchronization. We demonstrate the effectiveness of the proposed mechanism by comparing its performance with that of the conventional method.

  • PDF

A Study on Slipping Phenomenon in a Media Transport System (급지 장치에서의 미끄러짐 현상에 대한 연구)

  • 유재관;이순걸;임성수;김시은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.681-685
    • /
    • 2004
  • A media-feeding (or media-transport) system is a key component in daily consumer systems such as printers, copiers and ATM's. The role of the media-transport system is to feed a medium, which is usually in the form of a thin film, to the main process in a uniform and repeatable manner. Even small slippage between the media and the feeding rollers could significantly degrade the performance of the entire system. The slippage between the medium and the feeding rollers is determined by many parameters which include the friction coefficient between the feeding rollers and the medium material, the angular velocity of the feeding rollers, and the normal force applied by feeding rollers on the medium. This paper investigates the effect of the normal force and the angular velocity of feeding rollers on the slippage of the medium. Authors have constructed a test bed for experiments, which consists of a feeding module and various measuring devices. Using regular paper as media being fed, the authors experimentally measured the slippage of the medium under various normal forces and angular velocities of driving feeding roller. Also the authors developed a novel two-dimensional simulation model for the media-transport system. The paper medium is modeled as a set of multiple rigid bodies interconnected by revolute joints and rotational springs and dampers. Simulations were executed using a multi-body dynamic analysis tool called RecurDy $n^{ⓡ}$. The slippage obtained by the simulation is compared to experimental results.ults.

  • PDF

Simulation for Defect Diagnosis in Belt Transport System (벨트 이송 시스템의 결함 진단을 위한 시뮬레이션)

  • Lee, Nam-Hoon;Lyu, Sang-Heon;Ihn, Yong-Seok;Choi, Yeon-Sun;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.366-371
    • /
    • 2006
  • As functional requirements of automatic office machines like printers, Automatic Tellex Machines(ATMs), copying machines are on a trend for the higher speed and precision, extensive technical advances are being developed and implemented in the industry. Media transport system is a device to convey a sheet of paper in ATMs and printers. The stability of media transport system is a matter of concern as their operating throughput rapidly increases. And defects of belts or rollers in a transport system directly affect the level of stability of the system. Therefore an automatic diagnostic system for predicting various defects is necessary for the stable operation of the media transport system. A simulation based on multi-body dynamics has been done for a feasibility study of a system design for the defect anticipation.

BI-DIRECTIONAL TRANSPORT AND NETWORKED DISPLAY INTERFACE OF UNCOMPRESSED HD VIDEO

  • Park, Jong-Churl;Jo, Jin-Yong;Goo, Bon-Cheol;Kim, Jong-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.184-188
    • /
    • 2009
  • To interactively share High Definition (HD)-quality visualization over emerging ultra-high-speed network infrastructure, several lossless and low-delay real-time media (i.e., uncompressed HD video and audio) transport systems are being designed and prototyped. However, most of them still rely on expensive hardware components. As an effort to reduce the building cost of system, in this paper, we propose the integration of both transmitter and receiver machines into a single bi-directional transport system. After detailed bottleneck analysis and subsequent refinements of embedded software components, the proposed integration can provide Real-time Transport Protocol (RTP)-based bi-directional transport of uncompressed HD video and audio from a single machine. We also explain how to interface the Gbps-bandwidth display output of uncompressed HD media system to the networked tiled display of 10240 $\times$ 3200 super-high-resolution. Finally, to verify the feasibility of proposed integration, several prototype systems are built and evaluated by operating them in several different experiment scenarios.

  • PDF

Simulation for Belt Transport System using Crowning Roller (Crowning 롤러를 이용한 벨트 이송 시스템의 시뮬레이션)

  • Lyu, Sang-Heon;Ihu, Yong-Seok;Choi, Yeon-Sun;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.676-679
    • /
    • 2006
  • The media transport in automatic office machines such as printers, ATMs, copying machines is achieved by a complicated belt system. The system generally uses a crowning roller and belt which has been well-known for its intrinsic belt centering advantage during its operation. Since the modern office machines require precise high operating speed, stabilization of media transporting system has been one of the important issues of the machine design. Even a minor defect of the belt or the roller in the transport system directly affects its operating stability. This paper delivers a simulation technique that combines a multi-body dynamics analysis routine and a FEM based flexible continuum modeling for the efficient simulation of the flexible media transport problems.

  • PDF

Network-Adaptive Transport Error Control for Reliable Wireless Media Transmission (신뢰성 있는 무선 미디어 전송을 위한 네트워크 적응형 전송오류 제어)

  • Lee Chul-Ho;Choi Jeong-Yong;Kwon Young-Woo;Kim Jongwon;Shin Jitae;Jeon Dong-San;Kim Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.548-556
    • /
    • 2005
  • In wireless network environments, wireless channels are characterized by time-varying fading and interference conditions, which may lead to burst packet corruptions and delay variation. This can cause severe quality degradation of streaming media. To guarantee successful transmission of media over the hostile wireless networks, where channel conditions are highly fluctuating, a flexible and network-adaptive transport method is required. Thus, we propose a network-adaptive transport error control consisting of packet-level interleaved FEC and delay-constrained ARQ, which acts as an application-level transport method of streaming media to alleviate burst packet losses while adapting to the changing channel condition in wireless networks. The performances of the proposed network-adaptive transport error control, general error control schemes, and hybrid schemes are evaluated by a developed simulator at the transport-level and video quality of streaming media. Simulation results show that the proposed mechanism provides the best overall performance among compared other schemes in terms of the transport-level performance of error control and the performance of video quality for streaming media.

A Comparative Study of Tracer Tests in Fractured and Porous Media (단열 및 다공질 대수층에서의 추적자 시험연구)

  • 이진용;이지훈;김용철;천전용;이민효;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.132-135
    • /
    • 2001
  • To understand and compare tracer transport in fractured and porous media. multiple tracer tests were conducted in Wonju and Uiwang sites. The target media were fractured in Wonju site and porous in Uiwang site. It was known that groundwater flow for the two hydrogeologic systems could be represented using a EPM approach. However, the tracer transport in the two aquifer systems was greatly different. In this study, we analyzed the different tracer transport behavior in the two systems, from which our understanding of the tracer dispersion was greatly enhanced. we used bromide and chloride as tracers.

  • PDF

Adhesion and Transport of Bacteria in Iron-coated Media (철코팅 여재에서 박테리아의 부착 및 이동)

  • Lee, Chang-Gu;Park, Seong-Jik;Choi, Nag-Choul;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.833-838
    • /
    • 2007
  • In this study, adhesion and transport of bacteria in positively-charged media was investigated with batch and column experiments. Bacterial species used in this study was Escherichia coli ATCC 11105(length: 2.2 ${\mu}m$, diameter: 0.6 ${\mu}m$) and media used were quartz sand(particle size distribution: 0.5-2.0 mm, mean diameter: 1.0 mm) and iron-coated sand. Batch results indicate that bacterial adhesion increased as the content of iron-coated media increased. At iron-coated media 0%(quartz sand 100%), around 46% of bacteria was adhered to media while at iron-coated media 100%(quartz sand 0%) about 97% was attached. Column results also show that bacterial adhesion was enhanced with an increase of iron-coated media content. As the iron-coated media content increased from 0 to 100%, bacterial adhesion increased from 8 to 94%. The experimental results demonstrate that positively-charged media could influence transport of bacteria in porous media.