• 제목/요약/키워드: transparent conducting films

검색결과 332건 처리시간 0.03초

Sol-Gel 법을 이용한 ITO박막의 제조 (Fabrication of ITO Thin Film by Sol-Gel Method)

  • 김지홍;이재호;김영환
    • 전기화학회지
    • /
    • 제3권1호
    • /
    • pp.11-14
    • /
    • 2000
  • 가시광선 영역에서의 높은 투과성과 우수한 전도성을 가진 전도성 ITO박막은 그 전기적 광학적 특성에 의해서 태양 전기 기판의 전극 재료나 Display소자의 투명전극으로 개발되고 있다. 이들의 제작은 현재 sputtering이 주종을 이루나 이들의 높은 생산비를 절감할 목적으로 sol-ge떫을 이용하여 ITO박막을 만들었다. ITO제조용 sol은 유기질 sol로는 indium tri-iso-propoxide를 ethylene glycol monoethyl ether에 녹인 후 $SnCl_4$를 dopant로 사용하여 제조하였다. Acetyl acetone을 넣어 sol이 수화되는 현상을 억제하였다. 무기질 sol로는 indium acetate를 n-propanol에 용해하여 사용하였다. Spin 방법을 이용하여 코팅하였으며 $500^{\circ}C$에서 열처리하였다. 가시 광선 영역에서의 투과도는 $90\%$ 이상을 얻었으며 비저항은 $0.01\Omega{\cdot}cm$가 측정되었다.

인쇄전자 기술을 이용한 유기 태양전지 기술 개발 (Development of the Organic Solar Cell Technology using Printed Electronics)

  • 김정수;유종수;윤성만;조정대;김동수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

TiO2 전극의 소결 온도에 따른 DSSCs의 전기적 특성 및 AFM 형상 비교 (Comparison of Electrical Properties and AFM Images of DSSCs with Various Sintering Temperature of TiO2 Electrodes)

  • 김현주;이동윤;이원재;구보근;송재성
    • 한국전기전자재료학회논문지
    • /
    • 제18권6호
    • /
    • pp.571-575
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature$(350\;to\;550^{\circ}C)$. $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSSCs were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). Below sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively lower due to lower open circuit voltage. Oppositely, above sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively higher due to higher open circuit voltage. In both cases, lower fill factor (FF) was observed. However, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSSCs were mutually complementary, enhancing highest fill factor and efficiency. Such results can be explained in comparison of surface morphology with schematic diagram of energy states on the $TiO_2$ electrode surface. Consequently, it was considered that optimum sintering temperature of a-terpinol included $TiO_2$ paste is at $500^{\circ}C$.

텅스텐산화물/금속기판의 광전극 특성 (Photoelectrochamical characteristics of $WO_3$ on metal substrate for hydrogen production)

  • 고근호;;서선희;이동윤;이원재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.99.2-99.2
    • /
    • 2011
  • Transparent conducting oxides (TCOs) supported on glass are widely used as substrates in PEC studies for photovoltaic hydrogen generation applications However, high sheet resistane ($10{\sim}15{\Omega}/cm^2$) and fragileness of glass-supported TCO substrates are the obstacles to produce the large area PEC cells. Such internal sheet resistance is detrimental to efficient collection of photogenerated majority charge carriers at the photoactive material and electrolyte interface. Moreover, these TCO substrates are very expensive and consume about 40~60% cost of the devices. Hence, a low sheet resistance of the substrate is a key point in improving the performance of PEC devices. Metallic substrates coated with a photoactive material would be a good choice for efficient charge collection. Such metal substrates based photanodes are best candidate for large-scale phtoelectrochemical water splitting for hydrogen generation. In this study, we report the enhanced PEC performance of $WO_3$ film on metal(chemical etched, bare) substrate. It is proposed that interface between $WO_3$ and the metal substrate is responsible for efficient charge transfer and demonstrated significant improvement in the photoelectrochmical performance. X-ray diffration and FESEM suduies reveled that $WO_3$ films are monoclinic, porous, polycrystalline with average grain size of ~50nm. Photocurrent of $WO_3$ prepared on metal substrates was measured in 0.5M $H_2SO_4$ electroyte under simulated $100mW/cm^2$ illumination.

  • PDF

Reduced graphene oxide field-effect transistor for biomolecule detection and study of sensing mechanism

  • Kim, D.J.;Sohn, I.Y.;Kim, D.I.;Yoon, O.J.;Yang, C.W.;Lee, N.E.;Park, J.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.431-431
    • /
    • 2011
  • Graphene, two dimensional sheet of sp2-hybridized carbon, has attracted an enormous amount of interest due to excellent electrical, chemical and mechanical properties for the application of transparent conducting films, clean energy devices, field-effect transistors, optoelectronic devices and chemical sensors. Especially, graphene is promising candidate to detect the gas molecules and biomolecules due to the large specific surface area and signal-to-noise ratios. Despite of importance to the disease diagnosis, there are a few reports to demonstrate the graphene- and rGO-FET for biological sensors and the sensing mechanism are not fully understood. Here we describe scalable and facile fabrication of rGO-FET with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}1$-antichymotrypsin (PSA-ACT) complex, in which the ultrathin rGO sensing channel was simply formed by a uniform self-assembly of two-dimensional rGO nanosheets on aminated pattern generated by inkjet printing. Sensing characteristics of rGO-FET immunosensor showed the highly precise, reliable, and linear shift in the Dirac point with the analyte concentration of PSA-ACT complex and extremely low detection limit as low as 1 fg/ml. We further analyzed the charge doping mechanism, which is the change in the charge carrier in the rGO channel varying by the concentration of biomolecules. Amenability of solution-based scalable fabrication and extremely high performance may enable rGO-FET device as a versatile multiplexed diagnostic biosensor for disease biomarkers.

  • PDF

Synthesis of IZTO(Indium Zinc Tin Oxide) particle by spray pyrolysis and post-heat treatment and characterization of deposited IZTO film

  • Lim, Seong Taek;Kim, Sang Hern
    • 한국응용과학기술학회지
    • /
    • 제33권4호
    • /
    • pp.734-740
    • /
    • 2016
  • The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO's before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO's after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % $In_2O_3$, 10 wt. % ZnO, and 10 wt. % $SnO_2$ which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.

Active Materials for Energy Conversion and Storage Applications of ALD

  • 신현정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.75.2-75.2
    • /
    • 2013
  • Atomic layer deposition (ALD), utilizing self-limiting surface reactions, could offer promising perspectives for future efficient energy conversion devices. The capabilities of ALD for surface/interface modification and construction of novel architectures with sub-nanometer precision and exceptional conformality over high aspect ratio make it more valuable than any other deposition methods in nanoscale science and technology. In the context, a variety of researches on fabrication of active materials for energy conversion applications by ALD are emerging. Among those materials, one-dimensional nanotubular titanium dioxide, providing not only high specific surface area but also efficient carrier transport pathway, is a class of the most intensively explored materials for energy conversion systems, such as photovoltaic cells and photo/electrochemical devices. The monodisperse, stoichiometric, anatase, TiO2 nanotubes with smooth surface morphology and controlled wall thickness were fabricated via low-temperature template-directed ALD followed by subsequent annealing. The ALD-grown, anatase, TiO2 nanotubes in alumina template show unusual crystal growth behavior which allows to form remarkably large grains along axial direction over certain wall thickness. We also fabricated dye-sensitized solar cells (DSCs) introducing our anatase TiO2 nanotubes as photoanodes, and studied the effect of blocking layer, TiO2 thin films formed by ALD, on overall device efficiency. The photon convertsion efficiency ~7% were measured for our TiO2 nanotubebased DSCs with blocking layers, which is ~1% higher than ones without blocking layer. We also performed open circuit voltage decay measurement to estimate recombination rate in our cells, which is 3 times longer than conventional nanoparticulate photoanodes. The high efficiency of our ALD-grown, anatase, TiO2 nanotube-based DSCs may be attributed to both enhanced charge transport property of our TiO2 nanotubes photoanode and the suppression of recombination at the interface between transparent conducting electrode and iodine electrolytes by blocking layer.

  • PDF

ZnO/Ag Multilayer의 투과율과 전도성에 관한 연구 (The Study of Transmittance and Conductivity in ZnO/Ag Multilayer Films)

  • 김윤해;김도완;무라카미 리이치;문경만;이성열
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.39-43
    • /
    • 2011
  • This study has lowered the specific resistance by coating a thin film layer of Ag, playing the role of the electron donor on the ZnO that is used usefully for the transparent conductive oxides. Presently, this study has examined the transmittance and electric characteristics according to the thickness of the Ag thin film layer. Also, this study has observed the transmittance and electric characteristics according to the uppermost ZnO thin film layer of ZnO/Ag/ZnO symmetric film and has conducted the theoretical investigation. In order to observe the transmittance and electric characteristics according to the thickness of the Ag thin film layer and the uppermost ZnO thin film layer, this study conducted the film deposition at room temperature while making use of the DC magnetron sputtering system. In order to see the changes in the thickness of the Ag thin film layer, this study coated a thin film while increasing by 4nm; and, in order to see the changes in the thickness of uppermost ZnO thin film layer, it performed the thin film coating by increasing by 5nm. From the experimental result, the researchers observed that the best transmittance could be obtained when the thickness of the Ag thin film layer was 8nm, but the resistance and mobility increased as the thickness got larger. On the other hand, when the thickness of the uppermost ZnO thin film layer was 20nm, the experiment yielded the best transmittance with excellent electric characteristics. Also, when compared the ZnO/Ag asymmetric film with the ZnO/Ag/ZnO symmetric film, the ZnO/Ag asymmetric film showed better transmittance and electric characteristics.

졸-겔법에 의한 ITiO(Indium Titanium Oxide) 입자의 합성과 ITiO 박막의 광투과도 조사 (Synthesis of ITiO(Indium Titanium Oxide) particle by sol-gel and investigation on light transmittance of deposited ITiO thin film)

  • 고은주;김상헌
    • 한국응용과학기술학회지
    • /
    • 제34권4호
    • /
    • pp.705-716
    • /
    • 2017
  • 본 연구에서는 0.5, 1.0, 1.5 wt%의 $TiO_2$를 함유하는 인듐-티타늄 수산화물을 졸 및 염기 첨가에 의해 얻었고, $200^{\circ}C$$500^{\circ}C$에서 겔화 과정을 통해 ITiO(Indium Titanate Oxide)를 얻었다. $200^{\circ}C$에서 겔화 과정 후 얻어지는 ITiO 입자가 작아서 조밀성이 있는 ITiO 타겟을 제조하였다. 0.5, 1.0, 1.5 wt%의 $TiO_2$를 함유하는 ITiO 타겟을 스퍼터링하여 ITiO 박막을 유리판위에 제작하여 비저항, 전하 이동도, 캐리어 농도를 조사하였다. 이들 박막 중에서 산소 조성이 0.4 %인 조건에서 0.5 wt% 중량% $TiO_2$를 함유하는 ITiO 타겟으로부터 제작된 ITiO 박막이 가장 낮은 비저항, 가장 큰 전하이동도 및 가장 낮은 캐리어 농도를 보임을 알 수 있었고, 얻어진 ITiO 박막의 광투과율을 측정하여 적외선 영역에서 광투과율이 ITO(Indium Tin Oxide) 박막에 비해 현저히 증가함을 발견하였다.

원자층 증착법 기반 양이온-음이온 이중 도핑 효과에 따른 ZnO 박막의 전기적 특성 비교 연구 (An Investigation of Electrical Properties in Cation-anion Codoped ZnO by Atomic Layer Deposition)

  • 김동은;김건우;강경문;;박형호
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.94-101
    • /
    • 2023
  • 투명 전도성 산화물(TCO)를 대체할 수 있는 대표적인 물질로 알려진 ZnO는 3.37 eV의 bandgap과 60 meV의 exciton binding energy를 가진 반도체 물질이다. 본 연구에서는 투명 전극으로 사용하기 위한 높은 전기적 특성을 확보하기 위해 원자층 증착법을 기반으로 양이온과 음이온의 단일 및 이중 도핑에 따라 성장한 ZnO 박막을 제작하였다. 3가 양이온 Al, Ga과 음이온 F이 단일 및 이중 도핑된 ZnO 박막의 구조적, 광학적 특성 및 전기적 특성을 확인하였다. 단일 도핑의 경우, ZnO에 donor로 작용하는 Al, Ga, F에 의해 캐리어 농도가 도핑 전에 비해 증가하였고 근자외선 영역에서의 band-edge absorption이 증가하는 것을 확인하였다. 단일 도핑 중에서는 F이 ZnO 내 산소 공공 자리에 passivation 되면서 높은 mobility와 함께 가장 높은 전도도를 보였다. 이중 도핑의 경우, 각 원소들의 도핑 효과가 더해지면서 단일 도핑에 비해 높은 전기적 특성을 보였다. 결과적으로 Ga-F에 비해 Al-F 도핑 시 ionic radius 차이에 의한 lattice distortion 감소 및 delocalized 된 전자 상태의 증가로 가장 낮은 비저항 값을 보였으며 PDOS 분석을 통한 시뮬레이션 데이터로 측정 값과 일치하는 결과를 확인했다.