• Title/Summary/Keyword: transmission power

Search Result 5,780, Processing Time 0.027 seconds

A Study on Installation of Monitoring System of Wireless Power Transmission System (무선전력전송 시스템의 모니터링 시스템 구축에 관한 연구)

  • Song, Young-Sang;Han, Woon-Ki;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.47-53
    • /
    • 2015
  • The electrical safety and efficiency is the most important thing of the electric vehicle charging system. The prior system is contact charging system that is contacted directly by human. So, it has riskiness such as electric shock in the case of poor insulation or contact problems. To solve these safety issues and the convenience problems, a wireless power transmission system has been developed and is currently in trial operation. However, because high frequency is used in wireless power transmission system instead of commercial frequency, we need to apply protection measures concerning electric shock and equipment protection. Also, it should be accompanied by measuring efficiency for the effective operation of the wireless power transmission system. Therefore, we structured monitoring system in trial operation area of wireless power transmission system and applied decision algorithm for protection of human and equipment and economic operation of it.

Prediction of Flashover and Pollution Severity of High Voltage Transmission Line Insulators Using Wavelet Transform and Fuzzy C-Means Approach

  • Narayanan, V. Jayaprakash;Sivakumar, M.;Karpagavani, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1677-1685
    • /
    • 2014
  • Major problem in the high voltage power transmission line is the flashover due to polluted ceramic insulators which leads to failure of equipments, catastrophic fires and power outages. This paper deals with the development of a better diagnostic tool to predict the flashover and pollution severity of power transmission line insulators based on the wavelet transform and fuzzy c-means clustering approach. In this work, laboratory experiments were carried out on power transmission line porcelain insulators under AC voltages at different pollution conditions and corresponding leakage current patterns were measured. Discrete wavelet transform technique is employed to extract important features of leakage current signals. Variation of leakage current magnitude and distortion ratio at different pollution levels were analyzed. Fuzzy c-means algorithm is used to cluster the extracted features of the leakage current data. Test results clearly show that the flashover and pollution severity of power transmission line insulators can be effectively realized through fuzzy clustering technique and it will be useful to carry out preventive maintenance work.

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission (3 kW 무선 전력전송을 위한 전력 변환기 회로 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2020
  • In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

Array Topology of Microwave Wireless Power Transmission on Electronic Power System (전력계통 연계를 대비한 마이크로파 무선전력 송수신기 에레이 구성 고찰)

  • Lee, Dongho
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.88-91
    • /
    • 2015
  • Wireless power transmission (WPT) is a technology using free space as a conductor for transmitting electric power, which aims to transfer not just the transmission signal but also the electrical energy itself. This paper takes issue with the microwave wireless transmission technology utilizing in long-distance transmission. To construct the WPT system, several components are needed, such as RF Oscillator which converts AC power to RF through DC status, high gain antenna and RF rectifier that converts RF back to DC. The array topology is good a candidate for wide use. The objective of this research is to study the efect of the WPT systmem on electric power system.

Generalized Analysis on the Combined Effect of SPM and Fiber Chromatic Dispersion on Subcarrier Multiplexed Optical Transmission Systems for RoF Applications

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

Reliability Evaluation of Power System Operations Considering Time-Varying Features of Components

  • Hu, Bo;Zheng, Ying;Yang, Hejun;Xia, Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1422-1431
    • /
    • 2015
  • The reliability of power system components can be affected by a numbers of factors such as the health level of components, external environment and operation environment of power systems. These factors also affect the electrical parameters of power system components for example the thermal capacity of a transmission element. The relationship of component reliability and power system is, therefore, a complex nonlinear function related to the above-mentioned factors. Traditional approaches for reliability assessment of power systems do not take the influence of these factors into account. The assessment results could not, therefore, reflect the short-term trend of the system reliability performance considering the influence of the key factors and provide the system dispatchers with enough information to make decent operational decisions. This paper discusses some of these important operational issues from the perspective of power system reliability. The discussions include operational reliability of power systems, reliability influence models for main performance parameters of components, time-varying reliability models of components, and a reliability assessment algorithm for power system operations considering the time-varying characteristic of various parameters. The significance of these discussions and applications of the proposed techniques are illustrated by case study results using the IEEE-RTS.

Development and Application of Wireless Power Transmission Systems for Wireless ECG Sensors (지속적인 심장질환 모니터링을 위한 인체 삽입형 생체 센서의 무선전력전송 시스템)

  • Heo, Jin-Chul;Lee, Jong-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • We investigated the variations in the magnetic-field distribution and power transmission efficiency, resulting from changes in the relative positions of the transmitting and receiving coils, for electromagnetic-induction-type wireless power transmission using an elliptical receive coil. Results of simulations using a high-frequency structure simulator were compared to actual measurement results. The simulations showed that the transmission efficiency could be maintained relatively stable even if the alignment between the transmitting and receiving coils was changed to some extent. When the centre of the receiving coil was perfectly aligned with the centre of the transmitting coil, the transmission efficiency was the maximum; however, the degree of decrease in the transmission efficiency was small even if the centre of the receiving coil moved by ± 10mm from the centre of the transmitting coil. Therefore, it is expected that the performance of the wireless power transmission system will not be degraded significantly even if perfect alignment is not maintained. The results suggested a standardized application method of wireless transmission in the utilization of wireless power for implantable sensors.

Control Packet Transmission Decision Method for Wearable Sensor Systems (웨어러블 센서 시스템에서의 제어 패킷 전송 결정 기법)

  • Yu, Daeun;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.11-17
    • /
    • 2015
  • In the general transmission power control model that is used for wearable sensor systems, if RSSI value gets out of the Target RSSI Margin, then the sink node finds new transmission power by using TPC(Transmission Power Control) Algorithm. At this time, the sink node sends the control packet to the sensor node for delivering the newly calculated transmission power. However, when the wireless network channel condition is poor, even it is consuming a lot of control packets, the sink node could not find an appropriate transmission power so it only waste of energy. Therefore, we proposed a new control packet transmission decision method that the sink node changes the transmission power when the wireless network channel condition is stabilized. It makes waste of energy decline. In this paper, we apply control packet transmission decision method to Binary TPC algorithms and analyze the results to evaluate the proposed method. We propose three methods that judge the state of wireless network channel. We experiment that methods and analysis the results.

Proposed Performance Criteria and Evaluation Procedures for Transmission System Planning in Korea

  • Kook, Kyung-Soo;Kim, Taihyun;Oh, Tae-Kyoo;Bang, Min-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.160-165
    • /
    • 2002
  • This paper describes a proposed performance criteria and evaluation procedures for transmission system planning in Korea. Performance criteria of the transmission system are expected to be used as a guideline for investment into a transmission network. Moreover, performance evaluation procedures, which are based on current practices and widely accepted theories, are suggested to achieve fair and acceptable results.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.