• Title/Summary/Keyword: transmission line structures

Search Result 178, Processing Time 0.021 seconds

Risk assessment of transmission line structures under severe thunderstorms

  • Li, C.Q.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.773-784
    • /
    • 1998
  • To assess the collapse risk of transmission line structures subject to natural hazards, it is important to identify what hazard may cause the structural collapse. In Australia and many other countries, a large proportion of failures of transmission line structures are caused by severe thunderstorms. Because the wind loads generated by thunderstorms are not only random but time-variant as well, a time-dependent structural reliability approach for the risk assessment of transmission line structures is essential. However, a lack of appropriate stochastic models for thunderstorm winds usually makes this kind of analysis impossible. The intention of the paper is to propose a stochastic model that could realistically and accurately simulate wind loading due to severe thunderstorms. With the proposed thunderstorm model, the collapse risk of transmission line structures under severe thunderstorms is assessed numerically based on the computed failure probability of the structure.

Finite element modelling of transmission line structures under tornado wind loading

  • Hamada, A.;El Damatty, A.A.;Hangan, H.;Shehata, A.Y.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.451-469
    • /
    • 2010
  • The majority of weather-related failures of transmission line structures that have occurred in the past have been attributed to high intensity localized wind events, in the form of tornadoes and downbursts. A numerical scheme is developed in the current study to assess the performance of transmission lines under tornado wind load events. The tornado wind field is based on a model scale Computational Fluid Dynamic (CFD) analysis that was conducted and validated in a previous study. Using field measurements and code specifications, the CFD model data is used to estimate the wind fields for F4 and F2 full scale tornadoes. The wind forces associated with these tornado fields are evaluated and later incorporated into a nonlinear finite element three-dimensional model for the transmission line system, which includes a simulation for the towers and the conductors. A comparison is carried between the forces in the members resulting from the tornadoes, and those obtained using the conventional design wind loads. The study reveals the importance of considering tornadoes when designing transmission line structures.

Finite element modelling of self-supported transmission lines under tornado loading

  • Altalmas, A.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.473-495
    • /
    • 2014
  • Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

Behaviour of guyed transmission line structures under downburst wind loading

  • Shehata, A.Y.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.249-268
    • /
    • 2007
  • Past experience indicates that the majority of failures of electrical transmission tower structures occurred during high intensity wind events, such as downbursts. The wind load distribution associated with these localized events is different than the boundary layer wind profile that is typically used in the design of structures. To the best of the authors' knowledge, this study represents the first comprehensive investigation that assesses the effect of varying the downburst parameters on the structural performance of a transmission line structure. The study focuses on a guyed tower structure and is conducted numerically using, as a case study, one of the towers that failed in Manitoba, Canada, during a downburst event in 1996. The study provides an insight about the spatial and time variation of the downburst wind field. It also assesses the variation of the tower members' internal forces with the downburst parameters. Finally, the structural behaviour of the tower under critical downburst configurations is described and is compared to that resulting from the boundary layer normal wind load conditions.

Development of Short-Wavelength Transmission Line Employing Periodically Perforated Ground Metal for Application to Miniaturized On-chip Passive Components on Si RFIC (Si RFIC상의 온칩 수동소자에의 응용을 위한 주기적 접지 금속막 선로를 이용한 단파장 전송선로 개발)

  • Joh, Han-Nah;Park, Young-Bae;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.330-335
    • /
    • 2008
  • In this study, highly miniaturized short-wavelength transmission line employing periodically perforated ground metal (PPGM) structures were developed for application to miniaturized on-chip passive component on Si RFIC. The transmission line employing PPGM structure showed shorter wavelength and lower characteristic impedance than conventional coplanar-type transmission line. The wavelength of the transmission line employing PPGM structure was 57% of the conventional coplanar-type transmission line on Si Radio Frequency Integrated Circuit (RFIC) substrate. Basic characteristics of the transmission line employing PPGM structure were also investigated in order to evaluate its suitability for application to a development of miniaturized passive on-chip components. According to the results, it was found that the PPGM structure is a promising candidate for application to a development of miniaturized on-chip passive components on Si RFIC.

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

Dynamic response of an overhead transmission tower-line system to high-speed train-induced wind

  • Zhang, Meng;Liu, Ying;Liu, Hao;Zhao, Guifeng
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.335-353
    • /
    • 2022
  • The current work numerically investigates the transient force and dynamic response of an overhead transmission tower-line structure caused by the passage of a high-speed train (HST). Taking the CRH2C HST and an overhead transmission tower-line structure as the research objects, both an HST-transmission line fluid numerical model and a transmission tower-line structure finite element model are established and validated through comparison with experimental and theoretical data. The transient force and typical dynamic response of the overhead transmission tower-line structure due to HST-induced wind are analyzed. The results show that when the train passes through the overhead transmission tower-line structure, the extreme force on the transmission line is related to the train speed with a significant quadratic function relationship. Once the relative distance from the track is more than 15 m, the train-induced force is small enough to be ignored. The extreme value of the mid-span dynamic response of the transmission line is related to the train speed and span length with a significant linear functional relationship.

Collapse simulations of a long span transmission tower-line system subjected to near-fault ground motions

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Qiu, Canxing
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.211-220
    • /
    • 2017
  • Observations from past strong earthquakes revealed that near-fault ground motions could lead to the failure, or even collapse of electricity transmission towers which are vital components of an overhead electric power delivery system. For assessing the performance and robustness, a high-fidelity three-dimension finite element model of a long span transmission tower-line system is established with the consideration of geometric nonlinearity and material nonlinearity. In the numerical model, the Tian-Ma-Qu material model is utilized to capture the nonlinear behaviours of structural members, and the cumulative damage D is defined as an index to identify the failure of members. Consequently, incremental dynamic analyses (IDAs) are conducted to study the collapse fragility, damage positions, collapse margin ratio (CMR) and dynamic robustness of the transmission towers by using twenty near-fault ground motions selected from PEER. Based on the bending and shear deformation of structures, the collapse mechanism of electricity transmission towers subjected to Chi-Chi earthquake is investigated. This research can serve as a reference for the performance of large span transmission tower line system subjected to near-fault ground motions.

Stability behavior of the transmission line system under incremental dynamic wind load

  • Sarmasti, Hadi;Abedi, Karim;Chenaghlou, Mohammad Reza
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.509-522
    • /
    • 2020
  • Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.