• 제목/요약/키워드: transmission line element

검색결과 178건 처리시간 0.023초

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

Behavior of self supported transmission line towers under stationary downburst loading

  • Darwish, Mohamed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.481-498
    • /
    • 2011
  • During the past decade, many electrical transmission tower structures have failed during downburst events. This study is a part of a research program aimed to understand the behaviour of transmission lines under such localized wind events. The present study focuses on assessing the behaviour of self supported transmission line towers under downburst loading. A parametric study is performed to determine the critical downburst configurations causing maximum axial forces for various members of a tower. The sensitivity of the internal forces developing in the tower's members to changes in the downburst size and location was studied. The structural behaviour associated with the critical downburst configurations is described and compared to the behaviour under 'normal' wind loads.

Critical seismic incidence angle of transmission tower based on shaking table tests

  • Tian, Li;Dong, Xu;Pan, Haiyang;Gao, Guodong;Xin, Aiqiang
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.251-267
    • /
    • 2020
  • Transmission tower-line systems have come to represent one of the most important infrastructures in today's society. Recent strong earthquakes revealed that transmission tower-line systems are vulnerable to earthquake excitations, and that ground motions may arrive at such structures from any direction during an earthquake event. Considering these premises, this paper presents experimental and numerical studies on the dynamic responses of a 1000 kV ultrahigh-voltage (UHV) transmission tower-line system under different seismic incidence angles. Specifically, a 1:25 reduced-scale experimental prototype model is designed and manufactured, and a series of shaking table tests are carried out. The influence of the seismic incidence angle on the dynamic structural response is discussed based on the experimental data. Additionally, the incidence angles corresponding to the maximum peak displacement of the top of the tower relative to the ground (referred to herein as the critical seismic incidence angles) are summarized. The experimental results demonstrate that seismic incidence angle has a significant influence on the dynamic responses of transmission tower-line systems. Subsequently, an approximation method is employed to orient the critical seismic incidence angle, and a corresponding finite element (FE) analysis is carried out. The angles obtained from the approximation method are compared with those acquired from the numerical simulation and shaking table tests, and good agreement is observed. The results demonstrate that the approximation method can properly predict the critical seismic incidence angles of transmission tower-line systems. This research enriches the available experimental data and provides a simple and convenient method to assess the seismic performance of UHV transmission systems.

EMTP를 이용한 765kV 송전선로 다상 섬락에 관한 연구 (A Study on Multi-Phase Flashover in 765kV Transmission Line using EMTP)

  • 가복현;민석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1586-1588
    • /
    • 1998
  • To use the EMTP, in this paper, a arcing horn is simulated by non-linear resistor and inductor element using TACS, a tower by distributed parameter model, and lines as K. C. Lee model. Changing lightning current characteristics, lightning position, and tower footing resistor value, we analysis multi-phase flashover characteristics in 765 kV transmission line.

  • PDF

결함접지구조와 집중소자를 지닌 초고주파 전송선로의 전기적 특성 연구 (A Study on the Characteristics of Microwave Transmission Lines Having Defected Ground Structures and Lumped Elements)

  • 임종식;배주석;최관순;안달
    • 한국산학기술학회논문지
    • /
    • 제7권4호
    • /
    • pp.616-624
    • /
    • 2006
  • 본 논문은 집중소자가 결합된 결함접지구조를 갖는 초고주파 전송선로의 전기적 특성에 관하여 기술하고 있다. 주기구조의 일종인 결함접지구조를 전송선로에 삽입하면, 등가의 부가적인 인덕턴스와 캐패시턴스에 의하여 표준형 전송선로에는 없던 저역통과, 대역차단 또는 대역통과 특성이 발생하며, 전송선로의 전기적 길이가 늘어나는 지연파 특성이 나타난다. 여기에 다시 저항, 캐패시터, 인덕터와 같은 집중소자가 결합되면 공진주파수의 변화를 포함한 다양한 전송특성의 변화가 발생한다. 본 논문에는 결합되는 집중소자들의 값에 따른 DGS 전송선로의 특성 변화를 예측하고 실험적으로 검증하였다.

  • PDF

송전선에서 발생되는 자계에 의한 유도장해 해석 (Analysis of the influence of magnetic field generated from power transmission on the inductance interference)

  • 최세용;나완수;최명준;이세희;김동수;박일한;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1993-1995
    • /
    • 2000
  • In this paper, we calculate the magnetic field and analyze the inductive interference in conductive material around power transmission line. To compute induced eddy currents as well as magnetic fields, finite element method(FEM) is used for numerical calculation. The characteristics, transmission line height, conductive earth and mitigation wire are taken account of FEM analysis. This research also shows that mitigation wire reduces amount of eddy current in buried pipe line.

  • PDF

X-band용 직결합 대수주기형 마이크로스트립 안테나 (A Directly Coupled Log Periodic Microstrip Antenna for X-band)

  • 임규재;고성선;윤현보
    • 한국통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.182-191
    • /
    • 1988
  • 직결합(direct coupling) 급전 방식을 사용한 대수 주기형으로 배열된 마이크로 스트립 안테나(Log Periodic Microstrip Array Antenna)를 7.2-12.4GHz주파수 대역에서 설계하였다. 전송 선로 해석 방법에 유전체 및 도체 손실과 불연속에 의한 영향을 고려하여 각 안테나 소자를 설계하였으며 주 전송 선로와 각 안테나 소자 간의 임피던스 정합을 위하여 급전 위치를 최적화하여 정하였다. 측정한 결과 전 주파수 대역에서 정재파비가 2.4이하여??며 53%의 대역폭을 얻었다.

  • PDF

전송선형 $90^{\cire}$ 정위상기에 관한 연구 (A Study on $90^{\cire}$ Constant Phase Shifter)

  • 이충웅
    • 대한전자공학회논문지
    • /
    • 제13권6호
    • /
    • pp.12-15
    • /
    • 1976
  • 본논문은 현재 AF주파수변역에서 90° 정위상기를 실현하고 있는 방법과는 전혀 다른 착상으로 VHF 고파수대에서 90° 정위상기를 실현하는 새로운 방법을 제시하였다. 이 90° 정위상기의 구조는 간단하며 분포정수소자인 전송선과 집중정수소자인 R.L.C로 용이하게 실현된다. This paper presents the realization method of 90° constant phase shifter in the VHF band, constructed by the entirely differens idea from the conventional method of the realization of constant phase shifter in the audio frequency range. The construction of 90° constant phase shifter is. simple and can be easily realized by using the distributed constant element, transmission line, and the lumped constant elements, R,C,L.

  • PDF

Seismic response control of transmission tower-line system using SMA-based TMD

  • Tian, Li;Zhou, Mengyao;Qiu, Canxing;Pan, Haiyang;Rong, Kunjie
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.129-143
    • /
    • 2020
  • This study proposes a new shape memory alloy-tuned mass damper (SMA-TMD) and investigates the effectiveness of this damper in reducing and controlling the vibrations of a transmission tower-line system under various seismic excitations. Based on a practical transmission line system and considering the geometric nonlinearity of this system, the finite element (FE) software ANSYS is used to create an FE model of the transmission tower-line system and simulate the proposed SMA-TMD. Additionally, the parameters of the SMA springs are optimized. The effectiveness of a conventional TMD and the proposed SMA-TMD in reducing and controlling the vibrations of the transmission tower-line system under seismic excitations is investigated. Moreover, the effects of the ground motion intensity and frequency ratio on the reduction ratio (η) of the SMA-TMD are studied. The vibration reduction effect of the SMA-TMD under various seismic excitations is superior to that of the conventional TMD. Changes in the ground motion intensity and frequency ratio have a significant impact on the η of the SMA-TMD. As the ground motion intensity and frequency ratio increase, the η values of the SMA-TMD first increase and then decrease. Studying the vibration reduction effects of the SMA-TMD can provide a reference for the practical engineering application of this damper.

Evolution Strategy 알고리즘을 이용한 송진선로 주변에서의 최적 자계차폐 위치선정 (Decision of Optimal Magnetic Field Shielding Location around Power System Using Evolution Strategy Algorithm)

  • 최세용;나완수;김동훈;김동수;이준호;박일한;신명철;김병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권1호
    • /
    • pp.5-14
    • /
    • 2002
  • In this paper, we analyze inductive interference in conductive material around 345 kV power transmission line, and evaluate the effects of mitigation wires. Finite element method (FEM) is used to numerically compute induced eddy currents as well as magnetic fields around powder transmission lines. In the analysis model, geometries and electrical properties of various elements such as power transmission line, buried pipe lines, overhead ground wire, and conducting earth are taken into accounts. The calculation shows that mitigation wire reduces fairly good amount of eddy currents in buried pipe line. To find the optimum magnetic field shielding location of mitigation wire, we applied evolution strategy algorithm, a kind of stochastic approach, to the analysis model. Finally, it was shown that we can find more effective shielding effects with optimum location of one mitigation wire than with arbitrary location of multi-mitigation wires around the buried pipe lines.