• Title/Summary/Keyword: transmission length

Search Result 1,097, Processing Time 0.032 seconds

A Study on Overvoltage Reduction Method of Single Point Bonded Section on Combined Transmission Lines (혼합송전선로 편단접지 구간 과전압 저감 방안에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won;Park, Hung-Sok;Kim, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1881-1887
    • /
    • 2009
  • This paper discusses the effects of ECC (Earth Continuity Conductor) for reducing the level of induced sheath overvoltages at the single point bonded section of combined transmission lines which are mixed underground power cable with overhead line in one T/L. In previous papers, the characteristics of ECC on only underground power cable systems were sufficiently analyzed. However, the result of only underground power cable systems are totally different from that of combined transmission lines because ECC is commonly grounded with overhead grounding wire at mesh of cable head. Therefore, in this paper, the installation effects of ECC have been variously analyzed considering the three kinds of fault positions, cable formation of duct and trefoil, spacing between phase conductor and ECC, and the change of overhead transmission line section length on 154kV combined transmission line. Finally, simulation results show that ECC can effectively reduce the induced sheath voltage.

A Study on Characteristics of the Transmission Line Employing Periodically Perforated Ground Metal on GaAs MMIC and Its Application to Highly Miniaturized On-chip Impedance Transformer Employing Coplanar Waveguide (GaAs MMIC상에서 주기적으로 천공된 홀을 가지는 접지 금속막 구조를 이용한 전송선로 특성연구 및 코프레너 선로를 이용한 온칩 초소형 임피던스 변환기에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1248-1256
    • /
    • 2008
  • In this paper, basic characteristics of transmission line employing PPGM (periodically perforated ground metal) were investigated using theoretical and experimental analysis.According to the results, unlike the conventional PBG (photonic band gap) structures, the characteristic impedance of the transmission line employing PPGM structure showed a real value, which exhibited a very small dependency on frequency. The transmission line employing PPGM structure showed a loss (per quarter wave length) higher by $0.1{\sim}0.2\;dB$ than the conventional microstrip line. According to the investigation of the dependency of RF characteristic on ground condition, the RF characteristic of the transmission line employing PPGM structure was hardly affected by the ground condition in the frequency lower than Ku band, but fairly affected in the frequency higher than Ku band, which indicated that coplanar waveguide employing PPGM structure was optimal for RF characteristic and reduction of size. Considering above results, impedance transformer was developed using coplanar waveguide with PPGM structure for the first time, and good RF characteristics were observed from the impedance transformer. In case that {\lambda}/4$ impedance transformer with a center frequency of 9 GHz was fabricated for a impedance transformation from 20 to10 {\Omega}$, the line width and length were 20 and $500\;{\mu}m$, respectively, and its size was only 0.64 % of the impedance transformer fabricated with conventional microstrip lines. Above results indicate that the transmission line employing PPGM is a promising candidate for a development of matching and passive elements on MMIC.

A New Design Approach for Asymmetric Coupled-Section Marchand Balun

  • Park, Ji An;Cho, Choon Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.54-60
    • /
    • 2014
  • A systematic design for asymmetric coupled-section Marchand baluns is presented. Asymmetrically coupled transmission lines in multilayer configuration are exploited for constructing Marchand baluns. Design equations for characteristic impedance and electrical length of asymmetrical coupled transmission lines are derived for establishing a systematic design procedure. Novel Marchand balun based on these design equations is composed of two identical asymmetrical coupled transmission lines. However, contrary to the general conventional design approach where ranges for characteristic impedances of coupled lines are ambiguously capitalized, values for characteristic impedance and length are explicitly expressed. Our approach is fundamentally different from the design method using coupling coefficients where solution for coupling coefficient is inherently restricted. To verify the proposed method, one design example is performed for wideband Marchand balun in multilayer configuration, and is fabricated for verifying the design procedure proposed. Maintaining the return loss more than 10 dB, the bandwidth is measured from 0.43 to 1.0 GHz, where $S_{21}$ and $S_{31}$ show better than -4 dB. The measured phase and amplitude imbalances illustrate 0.5 dB and ${\pm}5^{\circ}$, respectively.

A Transmission Scheduling Algorithm for All-to-all Broadcast in Optical Passive Star Interconnections (Passive Star형 광상호연결망에서의 All-to-all 방송을 위한 송수신 스케쥴링 기법)

  • Chang, Seok-Mun;Byeon, Kwang-June;Yeh, Hong-Jin;Wee, Kyun-Bum;Hong, Man-Pyo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.8
    • /
    • pp.2013-2026
    • /
    • 1998
  • In optical passive star interconnections, all packets are transmitted between nodes ina broadcast and-select manner. It is assumed that each node has a innable transmitter and a fixed-savelength receiver, ad that all packet lengths are equal so that each transmission can be done in a unit time. The tuning delay, denoted by $\delta$, means the amount of time for transmitter to change its wavelength to another one. The problec is , given ay value of the mumber of nodes N and the number of wavelengths $\kappa$ according to WDM implementations, to find transmission schedules with minimum cycle length for all-to all brondcaxt where no one sends any packet to itself. In this paper, we prove that the cycle length of optimal transcission schedules should be at least $max[[{\frac{N}{k}](N-1)}]$,$k\delta$$+N-1$. A novel algorithm for optimal transmission schedules is then presented when N-1 is divisible by $\kappa$. This algorithm also can be used for any values of N and $\kappa$ if the tuning delay $\delta$ does not affect strictly the cycle length of transmission schedules, i,e, $[\frac{N}{k}](N-1)$ > $\kappa\delta$+N-1.

  • PDF

A New Reduced-Sized Lumped Distributed Power Divider Using The Shorted Coupled-line Pair (끝이 단락된 결합선로를 이용한 전력 분배기의 초소형화)

  • Kang, In-Ho;Choi, Jae-Kyo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.283-287
    • /
    • 2003
  • A new method to miniaturize ${\lambda}/4$ transmission line of power divider is proposed. The method utilizes simple combination of the shorted coupled-line pair instead of the transmission line with very high impedance and shunt lumped capacitors. The length of ${\lambda}/4$ transmission line of power divider is about 16% over the conventional power divider at 1 GHz.

  • PDF

ARQ Performance Analysis of Adaptive Packet Lenth Allocation Method (적응 패킷 길이 할당 방식의 ARQ 성능분석)

  • 정기호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.273-275
    • /
    • 1993
  • The throughput of conventional ARQ protocols can be improved by dynamically adapting the packet length. This protocol transmits packets with the length to maximize the transmission efficiency, based on the dynamic estimation of time-varying channel condition. A very simple adaptive scheme is presented. The results of a simulation show that the scheme performs well.

  • PDF

Modeling of a Pneumatic Cylinder Position Control system Considering Transfer Characteristics of a Transmission Line (관로의 전달 특성을 고려한 공기압 실린더 위치 제어계의 모델링)

  • Jang, Ji-Seong;Kang, Bo-Sik;Ji, Sang-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • In this study, a linearized model of pneumatic cylinder position control system including transmission line is proposed. The transmission line using compressible fluid has a nonlinear transfer characteristics because that the frequency response of it is changed by the flowing state of the fluid. But, when the pressure difference between both sides of transmission line is low, the effect of resonance characteristics of it under high frequency range can be neglected because of the friction force and low pass characteristics of the position control system. Therefore, the transmission line can be modeled by second order transfer function and the natural frequency, damping ratio and gain are changed by the diameter and length of it. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results and simulation results using conventional model.

  • PDF

Performance Evaluation of Multi-Hop Transmissions in IEEE 802.15.6 UWB WBAN (IEEE 802.15.6 UWB WBAN에서 다중 홉 전송에 대한 성능 평가)

  • Kim, Ho-Sung;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1313-1319
    • /
    • 2017
  • In this paper, we evaluate the performance of multi-hop transmissions in IEEE 802.15.6 ultra wide band (UWB) wireless body area network (WBAN). The packet structure in the physical layer, and encoding and decoding are considered for multi-hop transmissions in IEEE 802.15.6 UWB WBAN. We analyze the data success rate and energy efficiency of multi-hop transmissions with considering the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Through simulations, we evaluate the data success rate and energy efficiency of multi-hop transmissions with varying the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Finally, we can select an energy-efficient multi-hop transmission in IEEE 802.15.6 UWB WBAN depending on the length of data payload, transmission power, and distances between the nodes.

An Investigation of the Major Factors Relating to the Flow Fluctuation at a Natural Gas Metering Facility (천연가스 계량설비에서 발생하는 유량 헌팅 현상 원인 분석)

  • An, Seung-Hee;Her, Jae-Young;Jeong, Jong-Tae;Sin, Chang-Hun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.158-165
    • /
    • 2005
  • KOGAS(Korea Gas Corporation) has about a hundred of local stations to supply natural gas to the city gas companies and the power stations. As some severe flow fluctuation phenomena are observed in several governor stations, the investigation about the reasons and factors which are relating to flow fluctuation has been started. Some field surveys hav been carried out and experimental studies have been performed to find the fluctuation mechanism. As a result, it is found that the flow fluctuation is related with the length of straight pipe in front of the meter, the size of the header pipe and the variation of demand at the city gas company and the power station. Furthermore. it is also proved that both the length of the transmitter cable and the status of the coating of signal transmission cable do not affect flow fluctuation, but the measurement range of the differential pressure transmitter influences flow fluctuation. On the other hand, as the averaging the flow fluctuation is converged to less than 0.1 % in almost all of the cases, it is concluded that the quantity of flow fluctuation do not relates to metering accuracy directly.

  • PDF

Dynamic response of an overhead transmission tower-line system to high-speed train-induced wind

  • Zhang, Meng;Liu, Ying;Liu, Hao;Zhao, Guifeng
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.335-353
    • /
    • 2022
  • The current work numerically investigates the transient force and dynamic response of an overhead transmission tower-line structure caused by the passage of a high-speed train (HST). Taking the CRH2C HST and an overhead transmission tower-line structure as the research objects, both an HST-transmission line fluid numerical model and a transmission tower-line structure finite element model are established and validated through comparison with experimental and theoretical data. The transient force and typical dynamic response of the overhead transmission tower-line structure due to HST-induced wind are analyzed. The results show that when the train passes through the overhead transmission tower-line structure, the extreme force on the transmission line is related to the train speed with a significant quadratic function relationship. Once the relative distance from the track is more than 15 m, the train-induced force is small enough to be ignored. The extreme value of the mid-span dynamic response of the transmission line is related to the train speed and span length with a significant linear functional relationship.