• Title/Summary/Keyword: transmission congestion

Search Result 422, Processing Time 0.029 seconds

Congestion Detection and Avoidance for Reliable Data Transmission in Wireless Sensor Networks (무선 센서 네트워크에서 신뢰성 있는 데이터 전송을 위한 혼잡 탐지와 회피)

  • Park, Hong-Jin;Jang, Jae-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.343-350
    • /
    • 2010
  • Wireless Sensor Network is an event-driven system that a large number of micro sensor nodes are collected, giving and Wing information. Congestion can take place easily since a great number of sensor nodes are sensing data and transferring them to sink nodes when an event occurs, comparing to the existing wired network. Current internet transport protocol is TCP/UDP, however, this is not proper for wireless sensor network event-driven ESRT, STCP and CODA are being studied for reliable data transport in the wireless sensor network. Congestion are being detected local buffer and channel loading with these techniques. Broadcasting is mainly used and can avoid congestion when one happens. The way that combining local buffer and channel loading information and detecting congestion is being studied in this paper. When congestion occurs, buffering state is divided into three in order to lessen the broadcasting sending the message on congestion control to the node having frequent channel loading. Thus they have advantage of decreasing network's loading.

A Congestion Control Scheme Using Duty-Cycle Adjustment in Wireless Sensor Networks (무선 센서 네트워크에서 듀티사이클 조절을 통한 혼잡 제어 기법)

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.154-161
    • /
    • 2010
  • In wireless sensor networks, due to the many-to-one convergence of upstream traffic, congestion more probably appears. The existing congestion control protocols avoid congestion by controlling incoming traffic, but the duty-cycle operation of MAC(Medium Access Control) layer has not considered. In this paper, we propose DCA(Duty-cycle Based Congestion Avoidance), an energy efficient congestion control scheme using duty-cycle adjustment for wireless sensor networks. The DCA scheme uses both a resource control approach by increasing the packet reception rate of the receiving node and a traffic control approach by decreasing the packet transmission rate of the sending node for the congestion avoidance. Our results show that the DCA operates energy efficiently and achieves reliability by its congestion control scheme in duty-cycled wireless sensor networks.

An Experimental Implementation of a Cross-Layer Approach for Improving TCP Performance over Cognitive Radio Networks

  • Byun, Sang-Seon
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • In cognitive radio networks (CRNs), the performance of the transmission control protocol (TCP) at the secondary user (SU) severely drops due to the mistrigger of congestion control. A long disruption is caused by the transmission of primary user, leading to the mistrigger. In this paper, we propose a cross-layer approach, called a CR-aware scheme that enhances TCP performance at the SU. The scheme is a sender side addition to the standard TCP (i.e., TCP-NewReno), and utilizes an explicit cross-layer signal delivered from a physical (or link) layer and the signal gives an indication of detecting the primary transmission (i.e., transmission of the primary user). We evaluated our scheme by implementing it onto a software radio platform, the Universal Software Radio Peripheral (USRP), where many parts of lower layer operations (i.e., operations in a link or physical layer) run as user processes. In our implementation, we ran our CR-aware scheme over IEEE 802.15.4. Furthermore, for the purpose of comparison, we implemented a selective ACK-based local recovery scheme that helps TCP isolate congestive loss from a random loss in a wireless section.

Delay-based Rate Control for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 지연 시간 기반 전송률 제어)

  • Song Yong-Hon;Kim Nam-Yun;Lee Bong-Gyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.829-837
    • /
    • 2006
  • Due to the internet network congestion, packets may be dropped or delayed at routers. This phenomenon degrades the quality of streaming applications that require high QoS requirements. The proposed algorithm in this paper, called DBRC(Delay-Based Rate Control), tries to cause router queue occupancy to reach a steady state or equilibrium by throttling the transmission rate of the multimedia traffics when network delays tend to increase and also probing for more bandwidth when network delays tend to decrease. Simulation results show that the proposed algorithm provides smooth transmission rate, nearly constant delay and low packet loss rates, compared with TFRC(TCP Friendly Rate Control) that is one of dominant multimedia congestion control algorithms.

Effect of Generation Capacity Constraints on a Mixed Strategy Nash Equilibrium in a Multi-Player Game (다자게임에서 발전력제약이 복합전략 내쉬균형에 미치는 영향)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • Nash Equilibrium(NE) is essential to investigate a participant's bidding strategy in a competitive electricity market. Congestion on a transmission line makes it difficult to compute the NE due to causing a mixed strategy. In order to compute the NE of a multi-player game, some heuristics are proposed with concepts of a key player and power transfer distribution factor in other studies. However, generation capacity constraints are not considered and make it more difficult to compute the NE in the heuristics approach. This paper addresses an effect of generation capacity limits on the NE, and suggest a solution technique for the mixed strategy NE including generation capacity constraints as two heuristic rules. It is reported in this paper that a role of the key player who controls congestion in a NE can be transferred to other player depending on the generation capacity of the key player. The suggested heuristic rules are verified to compute the mixed strategy NE with a consideration of generation capacity constraints, and the effect of the generation constraints on the mixed strategy NE is analyzed in simulations of IEEE 30 bus systems.

TCP Performance Enhancement over the Wireless Networks by Using CPC and ZWSC (CPC와 ZWSC를 이용한 무선 망에서의 TCP 성능 향상 방안)

  • Lee, Myung-Sub;Park, Young-Min;Chang, Joo-Seok;Park, Chang-Hyeon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • With the original Transmission Control Protocol(TCP) design, which is particularly targeted at the wired networks, a packet loss is assumed to be caused by the network congestion. In the wireless environment where the chances to lose packets due to transmission bit errors are not negligible, though, this assumption may result in unnecessary TCP performance degradation. In these days, many papers describe about wireless-TCP which has suggested how to avoid congestion control when packet loss over the wireless network. In this paper, an enhancement scheme is proposed by modifying SNOOP scheme. To enhance the original SNOOP scheme, CPC(Consecutive Packet Control) and ZWSC(Zero Window Size Control) are added. The invocation of congestion control mechanism is now minimized by knowing the cause of packet loss. We use simulation to compare the overhead and the performance of the proposed schemes, and to show that the proposed schemes improve the TCP performance compares to SNOOP by knowing the cause of packet loss at the base station.

  • PDF

TFRC Congestion Control for Mobile Streaming Services Based on Guaranteed Minimum Transmission Rate (모바일 스트리밍 서비스를 위한 최소전송률 보장 기반 TFRC 혼잡제어)

  • Lee, Kang Seob;Choi, Seung-Sik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.3
    • /
    • pp.117-124
    • /
    • 2013
  • In this paper we propose a TFRC(TCP Friendly Rate Control) which guarantees a minimum rate in order to improve the efficiency of the previous TFRC which cannot distinguish congestion losses and wireless losses and decreases throughput both in wired and wireless networks. This TFRC technique is able to guarantee a minimum rate for video by restricting a loss event rate with packet loss probability about existing TFRC and constraining a rate reduction from the feedback timeout. When we experimented both the existing TFRC and the new one with TCP in the same network, we found that the latter is better than the former. Consequently, it shows that the proposed TFRC can improve video streaming quality using a guaranteed minimum transmission rate.

A Survey on Transport Protocols for Wireless Multimedia Sensor Networks

  • Costa, Daniel G.;Guedes, Luiz Affonso
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.241-269
    • /
    • 2012
  • Wireless networks composed of multimedia-enabled resource-constrained sensor nodes have enriched a large set of monitoring sensing applications. In such communication scenario, however, new challenges in data transmission and energy-efficiency have arisen due to the stringent requirements of those sensor networks. Generally, congested nodes may deplete the energy of the active congested paths toward the sink and incur in undesired communication delay and packet dropping, while bit errors during transmission may negatively impact the end-to-end quality of the received data. Many approaches have been proposed to face congestion and provide reliable communications in wireless sensor networks, usually employing some transport protocol that address one or both of these issues. Nevertheless, due to the unique characteristics of multimedia-based wireless sensor networks, notably minimum bandwidth demand, bounded delay and reduced energy consumption requirement, communication protocols from traditional scalar wireless sensor networks are not suitable for multimedia sensor networks. In the last decade, such requirements have fostered research in adapting existing protocols or proposing new protocols from scratch. We survey the state of the art of transport protocols for wireless multimedia sensor networks, addressing the recent developments and proposed strategies for congestion control and loss recovery. Future research directions are also discussed, outlining the remaining challenges and promising investigation areas.

A Router Buffer-based Congestion Control Scheme for Improving QoS of UHD Streaming Services (초고화질 스트리밍 서비스의 QoS를 향상시키기 위한 라우터 버퍼 기반의 혼잡 제어 기법)

  • Oh, Junyeol;Yun, Dooyeol;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.974-981
    • /
    • 2014
  • These days, use of multimedia streaming service and demand of QoS (Quality of Service) improvement have been increased because of development of network. QoS of streaming service is influenced by a jitter, delay, throughput, and loss rate. For guaranteeing these factors which are influencing QoS, the role of transport layer is very important. But existing TCP which is a typical transport layer protocol increases the size of congestion window slowly and decreases the size of a congestion window drastically. These TCP characteristic have a problem which cannot guarantee the QoS of UHD multimedia streaming service. In this paper, we propose a router buffer based congestion control method for improving the QoS of UHD streaming services. Our proposed scheme applies congestion window growth rate differentially according to a degree of congestion for preventing an excess of available bandwidth and maintaining a high bandwidth occupied. Also, our proposed scheme can control the size of congestion window according to a change of delay. After comparing with other congestion control protocols in the jitter, throughput, and loss rate, we found that our proposed scheme can offer a service which is suitable for the UDH streaming service.

TCP Performance Control Method for the Wireless Link by using Extended ECN Mechanism (확장된 ECN 메커니즘을 사용한 무선 링크에서의 TCP성능 제어 기법)

  • Yun, You-Hun;Kim, Tai-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.336-343
    • /
    • 2002
  • Nowadays, after appearance of wireless network the existent internet environment is changing into the united wire/wireless network. But the present TCP regards all of the packet losses on transmission as the packet tosses due to the congestion. When it is applied on the wireless path, it deteriorates the end-to-end TCP throughput because it regards the packet loss by handoff or bit error as the packet loss by the congestion and it reduces the congestion window. In this paper, for solving these problems we propose the method that controls the performance of TCP on the wireless link by extending ECN which is used as a congestion control mechanism on the existent wire link. This is the method that distinguished the packet loss due to the congestion from due to bit error or handoff on the wireless network, so it calls the congestion control mechanism only when there occurs the congestion in the united wire/wireless network.