• Title/Summary/Keyword: transmembrane

Search Result 588, Processing Time 0.033 seconds

Identification of Transmembrane Domain of a Membrane Associated Protein NS5 of Dendrolimus punctatus Cytoplasmic Polyhedrosis Virus

  • Chen, Wuguo;Zhang, Jiamin;Dong, Changjin;Yang, Bo;Li, Yanqiu;Liu, Chuanfeng;Hu, Yuanyang
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2006
  • We examined the intracellular localization of NS5 protein of Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV) by expressing NS5-GFP fusion protein and proteins from deletion mutants of NS5 in baculovirus recombinant infected insect Spodoptera frugiperda (Sf-9) cells. It was found that the NS5 protein was present at the plasma membrane of the cells, and that the N-terminal portion of the protein played a key role in the localization. A transmembrane region was identified to be present in the N-terminal portion of the protein, and the detailed transmembrane domain (SQIHMVWVKSGLVFF, 57-71aa) of N-terminal portion of NS5 was further determined, which was accorded with the predicted results, these findings suggested that NS5 might have an important function in viral life cycle.

Polymorphisms of Transmembrane Channel-like 1 Gene are Associated with Kawasaki Disease in Korean Population

  • Lim, Tae-Wan;Kim, Su-Kang;Ban, Ju-Yeon;Chung, Joo-Ho;Song, Jeong-Yoon;Yoon, Kyung-Lim;Park, Sung-Wook;Kim, Keon-Sik;Shin, Ok-Young
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.291-297
    • /
    • 2009
  • Kawasaki disease (KD) is believed to be infectious but etiology and the mechanism of development remain elusive. The aim of this study was to investigate the association between transmembrane channel-like 1 (TMC1) gene and KD. One hundred nine KD patients and 424 normal controls were enrolled. Of all KD patients, 34 developed coronary artery lesions (CALs). Eleven single nucleotide polymorphisms (SNPs) within TMC1 gene were selected and SNP genotyping was performed by the direct sequencing. Genotype frequencies were analyzed with the SNPAnalyzer, Helixtree, and SNPStats programs. In the present study, six SNPs (rs7851577, rs10781105, rs2589615, rs1663743, rs1373628, and rs1373626) were significantly associated with the risk of KD. In further haplotype analysis, one haplotype (CGGACCCT) showed a significant association between KD and control groups. These results suggest that TMC1 gene may be a susceptibility gene for KD in Korean population.

Transmembrane Protein 166 Expression in Esophageal Squamous Cell Carcinoma in Xinjiang, China

  • Sun, Wei;Ma, Xiu-Min;Bai, Jing-Ping;Zhang, Guo-Qing;Zhu, Yue-Jie;Ma, Hai-Mei;Guo, Hui;Chen, Ying-Yu;Ding, Jian-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3713-3716
    • /
    • 2012
  • Objective: Transmembrane protein 166 (TMEM166) expression in esophageal squamous cell carcinoma (ESCC) and remote normal esophageal tissues was examined to assess any role in tumour biology. Methods: TMEM166 mRNA expression in 36 cases with ESCC (36 tumour samples, 36 remote normal esophageal tissue samples) was detected by RT-PCR. TMEM166 protein expression was analysed in paraffin-embedded tissue samples from the same cases by immunohistochemistry. Results: Semi-quantitative analysis showed TMEM166 mRNA expression in ESCCs to be significantly lower than in remote normal esophageal tissues ($0.759{\pm}0.713$ vs. $2.622{\pm}1.690$, P=0.014). TMEM166 protein expression was also significantly reduced (69.4% vs. 94.4%, P<0.01). Conclusion: TMEM166 mRNA and protein expression demonstrated significant reduction in ESCCs compared with remote esophageal tissues, albeit with no correlation with tumour size, differentiation, stage, and lymph node metastasis, suggesting a role in regulating autophagic and apoptotic processes in the ESCC.

C-terminal Truncation Mutant of the Human ${\beta}_2$-adrenergic Receptor Expressed in E. coli as a Fusion Protein Retains Ligand Binding Affinity

  • Shin, Jin-Chul;Lee, Sang-Derk;Shin, Chan-Young;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.97-102
    • /
    • 1996
  • To investigate whether human $\beta$$_2$-adrenergic receptor devoid of the C-terminal two transmembrane helices retain its ligand binding activity and specificity, 5'780-bp DNA fragment of the receptor gene which encodes amino acid 1-260 of human $\beta$$_2$-adrenergic receptor was subcloned into the bacterial fusion protein expression vector and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was expressed as a membrane bound form which was verified by SDS-PAGE and Western blot. The fusion protein expressed in this study specifically bound $\beta$-adrenergic receptor ligand [$^3$H] Dihydroalprenolol. In saturation ligand binding assay, the $K_{d}$ value was 7.6 nM which was similar to that of intact $\beta$$_2$-adrenergic receptor in normal animal tissue ( $K_{d}$=1~2 nM) and the $B_{max}$ value was 266 fmol/mg membrane protein. In competition binding assay, the order of binding affinity of various adrenergic receptor agonists to the fusion protein was isoproterenol》epinephrine norepinephrine, which was similar to that of intact receptor in normal animal tissue. These results suggest that N-terminal five transmembrane helices of the $\beta$$_2$-adrenergic receptor be sufficient to determine the ligand binding activity and specificity, irrespective of the presence or absence of the C-terminal two transmembrane helices.s.s.s.

  • PDF

Cancer Research Advances Regarding the CKLF-like MARVEL Transmembrane Domain Containing Family

  • Lu, Jia;Wu, Qian-Qian;Zhou, Ya-Bo;Zhang, Kai-Hua;Pang, Bing-Xin;Li, Liang;Sun, Nan;Wang, Heng-Shu;Zhang, Song;Li, Wen-Jian;Zheng, Wei;Liu, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2741-2744
    • /
    • 2016
  • The CKLF-like MARVEL transmembrane domain-containing family (CMTM) is a novel family of genes first reported at international level by Peking University Human Disease Gene Research Center. The gene products act between chemokines and the transmembrane-4 superfamily. Located in several human chromosomes, the CMTMs CKLF and CMTM1 to CMTM8 may be unregulated in tumors and act as potential tumor suppressor genes with important roles in the immune, male reproductive and hematopoietic systems. In-depth studies in recent years established a close relation between CMTMs and tumorigenesis and metastasis. The CMTM family has a significant clinical value in diagnosis and treatment of diseases linked to tumors and the immune system.

Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192

  • Shyu, Rong-Yaun;Wang, Chun-Hua;Wu, Chang-Chieh;Chen, Mao-Liang;Lee, Ming-Cheng;Wang, Lu-Kai;Jiang, Shun-Yuan;Tsai, Fu-Ming
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.877-887
    • /
    • 2016
  • Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.

Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

  • Kim, Ji-Yeon;Ahn, Hye-Jin;Ryu, Kyung-Ju;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.

Membrane Filtration Characteristics of Oil/Water Emulsions (오일/물 에멀젼의 분리막 투과 특성)

  • Kim, Jong-Pyo;Lim, Jin-Soo;Ryu, Jong-Hoon;Kim, Jae Jin;Chung, Kun Yong;Chun, Myung-Suk;Min, Byoung-Ryul
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • Separation characteristics of cutting oil-in-water emulsions were studied experimentally by using various kinds of flat-type microfiltration and ultrafiltration membranes. For ultrafiltration membranes the permeation behavior of cutting oil emulsions obeys the film model, whereas a significant deviation from the model was observed for ASYPOR microfiltration membranes. The experimental data obtained for all the membranes showed that the effect of operating pressure on the permeation flux of oil-in-water emulsions is not very significant. At low transmembrane pressures the permeation flux decreased gradually with increasing filtration time, whereas the permeation flux at high transmembrane pressures decreased steeply for early filtration time. However, every flux eventually reached a constant value that depends only on the applied transmembrane pressure. For the hydrophobic polycarbonate microfiltration membrane the permeation flux increased with the filtration time. The critical permeation pressures were also determined from the data obtained from unstirred cell experiments.

  • PDF

The proteasome inhibition enhances apoptosis by P53 expression and the dissipation of mitochondrial transmembrane potential in TRAIL-resistant lung cancer cells (Proteasome 억제에 의한 P53의 발현과 미토콘드리아 막 전압의 소실로 TRAIL에 저항하는 폐암세포의 사멸 강화)

  • Seol, Jae-Won;Park, Sang-Youel
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The ubiquitin-proteasome mediated protein degradation pathway plays an important role in regulating both cell proliferation and cell death. Proteasome inhibitors are well known to induce apoptosis in various human cancer cell lines. We investigated the effect of combined treatment with proteasome inhibitor and TRAIL, and a possible mechanism of the enhancing apoptosis by the both treatment, on TRAIL-resistant non-small cell lung cancer. A549 cells were exposed to the N-Acetyl-Leu-Leu-Norleu-al (ALLN) as a proteasome inhibitor and then treated with recombinant TRAIL protein. In A549 cells under proteasome inhibition conditions by pretreatment with ALLN, TRAIL treatment significantly decreased cell viability compared to that ALLN and TRAIL alone treatment. Also, the both treatment induced cell damage through DNA fragmentation and p53 expression. In addition, the combined treatment of both markedly increased caspase-8 activation, especially the exposure for 2 h, and Bax expression and induced the dissipation of mitochondrial transmembrane potential in A549 cells. Taken together, these findings showed that proteasome inhibition by ALLN enhanced TRAIL-induced apoptosis via DNA degradation by activated P53 and mitochondrial transmembrane potential loss by caspase-8 activation and bax expression. Therefore, our results suggest that proteasome inhibitor may be used a very effectively chemotherapeutic agent for the tumor treatment, especially TRAIL-resistant tumor cell.

Ultrafiltration membranes for drinking-water production from low-quality surface water: A case study in Spain

  • Rojas-Serrano, Fatima;Alvarez-Arroyo, Rocio;Perez, Jorge I.;Plaza, Fidel;Garralon, Gloria;Gomez, Miguel A.
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • Ultrafiltration membranes have several advantages over conventional drinking-water treatment. However, this technology presents major limitations, such as irreversible fouling and low removal of natural organic matter. Fouling depends heavily on the raw-water quality as well as on the operating conditions of the process, including flux, permeate recovery, pre-treatment, chemical cleaning, and backwashing. Starting with the premise that the optimisation of operating variables can improve membrane performance, different experiments were conducted in a pilot plant located in Granada (Spain). Several combinations of permeate and backwashing flow rates, backwashing frequencies, and aeration flow rates were tested for low-quality water coming from Genil River with the following results: the effluent quality did not depend on the combination of operating conditions chosen; and the membrane was effective for the removal of microorganisms, turbidity and suspended solids but the yields for the removal of dissolved organic carbon were extremely low. In addition, the threshold transmembrane pressure (-0.7 bar) was reached within a few hours and it was difficult to recover due to the low efficiency of the chemical cleanings. Moreover, greater transmembrane pressure due to fouling also increased the energy consumption, and it was not possible to lower it without compromising the permeate recovery. Finally, the intensification of aeration contributed positively to lengthening the operation times but again raised energy consumption. In light of these findings, the feasibility of ultrafiltration as a single treatment is questioned for low-quality influents.