• Title/Summary/Keyword: translation initiation factor

Search Result 65, Processing Time 0.032 seconds

Suil Translation Initiation Factor of Bombyx mori

  • Hong, Sun-Mee;Kang, Seok-Woo;Hwang, Jae-Sam;Goo, Tae-Won;Yun, Eun-Young;Park, Kwang-Ho;Nho, Si-Kab
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.102-103
    • /
    • 2003
  • Suil (suppressors of initiator codon mutations) is a component of the translation initiation complex which plays an important role in ribosomal recognition of the initiator codon. Here we report the complete cDHA sequence of Bmobyx mori analogy of the Anopheles gambiae suil translation initiation factor gene and expressions of each organ. (omitted)

  • PDF

AUA as a Translation Initiation Site In Vitro for the Human Transcription Factor Sp3

  • Hernandez, Eric Moore;Johnson, Anna;Notario, Vicente;Chen, Andrew;Richert, John R.
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.273-282
    • /
    • 2002
  • Sp3 is a bifunctional transcription factor that has been reported to stimulate or repress the transcription of numerous genes. Although the size of Sp3 mRNA is 4.0kb, the size of the known Sp3 cDNA sequence is 3.6kb. Thus, Sp3 functional studies have been performed with an artificially introduced start codon, and thus an amino-terminus that differs from the wild-type. Ideally, full-length cDNA expression vectors with the appropriate start codon should be utilized for these studies. Using 5'rapid amplification of cDNA ends, a full-length Sp3 cDNA clone was generated and the sequence verified in nine cell lines. No AUG initiation codon was present. However, stop codons were present in all three frames 5' to the known coding sequence. In vitro translation of this full-length cDNA clone produced the expected three isoforms-one at 100 kDa and two in the mid 60 kDa range. Electrophoretic mobility shift assays showed that the protein products had the ability to bind to the Sp1/3 consensus sequence. In vitro studies, using our Sp3 clone and site directed mutagenesis, identified the translation initiation site for the larger isoform as AUA. AUA has not been previously described as an endogenous initiation codon in eukaryotes.

Translation Initiation Factor IF1-Dependent Stimulation of 30 S Preinitiation Complex Formation: Rapid Isolation and fMEt-tRNA Binging Activity of IF1

  • CHOIK, SANG-YUN;HYUN-JUNG KIM;JUNG-IK YANG;HYO-IL CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.986-993
    • /
    • 2001
  • Translation Initiation in prokaryotes involves the formation of a 30 S preinitiation complex, in which translation initiation factors play a role in the stimulation of fMet-tRNA (fMet) binding. However, the specific function and precise mechanism of initiation factor IF1 are still unclear. One a functionally active factor with a high purity. In the present study a large quantity of active IF was rapidly purified, obtained by the overexpression of the infA gene, and then used for a functional study. The induction of infA did not appreciably affect the growth rate of the protease-deficient strain E. coli AR68 harboring the IF1 overproducing plasmid. The level of IF1 obtained was approximately $1-2\%$ of the total cell protein, which enabled the yield of highly purified IF1 (>$98\%$ pure) to be increased to 0.15 mg of IF1/g of cells. The IF1 was isolated within one day by the centrifugatioin of the ribosomal washed fraction, by ammonium sulfate fractionation, chromatography on batch of phosphocellulose, and FPLC Mono S. The overexpressed IF1 was found to be comparable to the factor isolated from normal cells, as determined by migration in NEPHGE/SDS 2-D gels. For binding of fMet-tRNA(fMet) to the 30 S ribosomal subunitis, relatively high levels of binding were obtained when IF2 was present. The addition of IF1 up to 110 pmol proportionally stimulated the binding to a variable extent. This IF1-dependent stimulation of the 30 S preinitiation complex formation demonstrated that IF1 would appear to be exclusively essential for promoting the initiation phase of protein synthesis.

  • PDF

Translational control of mRNAs by 3'-Untranslated region binding proteins

  • Yamashita, Akio;Takeuchi, Osamu
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.194-200
    • /
    • 2017
  • Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3'-untranslated regions (UTRs) of mRNAs. mRNA 3'-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates mRNA translation via various mechanisms targeting the mRNA cap structure, the eukaryotic initiation factor 4E (eIF4E)-eIF4G complex, ribosomes, and the poly (A) tail. We also discuss translation-mediated regulation of mRNA fate.

Translation Initiation Factor 4E (eIF4E) is Regulated by Cell Death Inhibitor, Diap1

  • Lee, Sun Kyung;Lee, Ji Sun;Shin, Ki Soon;Yoo, Soon Ji
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.445-451
    • /
    • 2007
  • Translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Abnormal regulation of eIF4E is closely linked to oncogenic transformation. Several regulatory mechanisms affecting eIF4E are discussed, including transcriptional regulation, phosphorylation and binding of an inhibitor protein. However it is not clear how the level of eIF4E protein is regulated under basal conditions. Here we demonstrate that Diap1 (Drosophila Inhibitor of Apoptosis Protein), a cell death inhibitor, binds directly to eIF4E and poly-ubiquitinates it via its E3 ligase activity, promoting its proteasome-dependent degradation. Expression of Diap1 caused a reduction of Cyclin D1 protein level and inhibited the growth stimulation induced by overexpression of eIF4E. Taken together, our results suggest that the level of eIF4E protein is regulated by Diap1, and that IAPs may play a role in cap-dependent translation by regulating the level of eIF4E protein.

Effect of cell growth inhibition by eukaryotic initiation factor 2 derived peptides (진핵생물 개시인자 유래 펩타이드의 세포 성장 억제 효능)

  • Yu, HanJin;Lim, Kwang Suk
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In the process of protein transcription and translation, various protein complexes bind to DNA, and all processes are precisely controlled. Among the proteins constituting this complex, a peptide derived from eukaryotic initiation factor (eIF) 2 was synthesized. In addition, in order to increase the efficiency of transduction of this peptide into cells, peptides with polyarginine, one of the protein transduction domains (PTD), were synthesized. Cell growth inhibition was confirmed in HER2 positive breast cancer (SK-Br-3) and HER2 negative breast cancer (MDA-MB-231), and cardiomyocytes (H9c2). The peptide with polyarginine had high transduction efficiency in all cells, and had excellent cancer cell growth inhibitory effects. The peptide used in this study might be useful peptide therapeutics for the treatment of cancer through future research.

Role of E2F1 in Endoplasmic Reticulum Stress Signaling

  • Park, Kyung Mi;Kim, Dong Joon;Paik, Sang Gi;Kim, Soo Jung;Yeom, Young Il
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.356-359
    • /
    • 2006
  • The transcription factor E2F1 coordinates cell cycle progression and induces apoptosis in response to DNA damage stress. Aside from DNA damage, the role of E2F1 in the endoplasmic reticulum (ER) stress signaling pathways is unclear. We found that $E2F1^{-/-}$ murine embryonic fibroblasts (MEFs) are resistant to apoptosis triggered by the ER stress inducer thapsigargin. In addition, E2F1 deficiency results in enhanced phosphorylation of eukaryotic translation initiation factor $2{\alpha}$ ($elF2{\alpha}$). These results therefore indicate that E2F1 deficiency increases phosphorylation of $elF2{\alpha}$ in response to ER stress triggered by thapsigargin, and suggest that the reduction in ER stress-induced apoptosis in E2F1-deficient cells is related to the high level of $elF2{\alpha}$ phosphorylation.

Functional Equivalence of Translation Factor elF5B from Candida albicans and Saccharomyces cerevisiae

  • Jun, Kyung Ok;Yang, Eun Ji;Lee, Byeong Jeong;Park, Jeong Ro;Lee, Joon H.;Choi, Sang Ki
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.172-177
    • /
    • 2008
  • Eukaryotic translation initiation factor 5B (eIF5B) plays a role in recognition of the AUG codon in conjunction with translation factor eIF2, and promotes joining of the 60S ribosomal subunit. To see whether the eIF5B proteins of other organisms function in Saccharomyces cerevisiae, we cloned the corresponding genes from Oryza sativa, Arabidopsis thaliana, Aspergillus nidulans and Candida albican and expressed them under the control of the galactose-inducible GAL promoter in the $fun12{\Delta}$ strain of Saccharomyces cerevisiae. Expression of Candida albicans eIF5B complemented the slow-growth phenotype of the $fun12{\Delta}$ strain, but that of Aspergillus nidulance did not, despite the fact that its protein was expressed better than that of Candida albicans. The Arabidopsis thaliana protein was also not functional in Saccharomyces. These results reveal that the eIF5B in Candida albicans has a close functional relationship with that of Sacharomyces cerevisiae, as also shown by a phylogenetic analysis based on the amino acid sequences of the eIF5Bs.

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.

An Interferon Resistance Induced by the Interaction between HCV NS5B and Host p48 (C형 간염 바이러스 NS5B 단백질과 숙주의 p48 단백질의 상호작용에 의한 인터페론 저항성의 유도)

  • Park, So-Yeon;Lee, Jong-Ho;Myung, Hee-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.353-359
    • /
    • 2008
  • Hepatitis C virus (HCV) is known as the causative agent of blood transmitted hepatitis. Two viral proteins, E2 and NS5A, are known to exert interferon resistance of HCV via PKR pathway. Here, we report a third protein, the RNA-dependent RNA polymerase (NS5B) of HCV, induced interferon resistance inhibiting p56 pathway. p56 was shown to interact with p48 subunit of eukaryotic initiation factor 3 (eIF3). This interaction inhibited formation of ternary complex in translation initiation. Using dual reporter assay system, we observed that the translation decreased when interferon alpha was added to the culture. But, in the presence of HCV NS5B, the translation partly recovered. NS5B and p48 subunit of eIF3 were shown to interact. This interaction seems to inhibit the interaction between p48 and p56. This is the first report that a virus exerts interferon resistance via p56 pathway.