• Title/Summary/Keyword: transition-metal films

Search Result 158, Processing Time 0.029 seconds

Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides

  • Jung, Yeonjoon;Ji, Eunji;Capasso, Andrea;Lee, Gwan-Hyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.24-36
    • /
    • 2019
  • Recently, considerable progress and many breakthroughs have been achieved in the growth of two-dimensional materials, especially transition metal dichalcogenides (TMDCs), which attract significant attention owing to their unique properties originating from their atomically thin layered structure. Chemical vapor deposition (CVD) has shown great promise to fabricate large-scale and high-quality TMDC films with exceptional electronic and optical properties. However, the scalable growth of high-quality TMDCs by CVD is yet to meet industrial criteria. Therefore, growth mechanisms should be unveiled for a deeper understanding and further improvement of growth methods are required. This review summarizes the recent progress in the growth methods of TMDCs through CVD and other modified approaches to gain insights into the growth of large-scale and high-quality TMDCs.

ROOM TEMPERATURE FERROMAGNETISM IN TRANSITION METAL DOPED OXIDE SEMICONDUCTORS, $TiO_2$ and ZnO

  • Y. H. Jeong;S-J. Han;Park, J.H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.17-17
    • /
    • 2003
  • Semiconductors with ferromagnetism at room temperature has been actively searched for in recent years; a prospect of devices using both charge and spin continuously gives impetus to the activities. Transition metal doped oxide materials have been of particular interest. Co substituted ZnO [1] and TiO$_2$ [2] thin films, for example, were reported to show ferromagnetic properties at room temperature. However, various studies do not seem to converge on a definite picture [3,4,5]. The issue is rather fundamental: whether a system shows ferromagnetic properties at all, and in case it does, whether the system possesses a close coupling between magnetism and transport properties. In this talk, we shall assess the current status of transition metal doped oxide materials as room temperature ferromagnetic semiconductors.

  • PDF

Synergistic Effect on the Photocatalytic Degradation of 2-Chlorophenol Using $TiO_2$Thin Films Doped with Some Transition Metals in Water

  • Jeong, O Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1183-1191
    • /
    • 2001
  • The metallorganic chemical vapor deposition (MOCVD) method has been used to prepare TiO2 thin films for the degradation of hazardous organic compounds, such as 2-chlorophenol (2-CP). The effect of supporting materials and metal doping on the photocatalytic activity of TiO2 thin films also has been studied. TiO2 thin films were coated onto various supporting materials, including stainless steel cloth(SS), quartz glass tube (QGT), and silica gel (SG). Transition metals, such as Pd(II), Pt(IV), Nd(III) and Fe(III), were doped onto TiO2 thin film. The results indicate that Nd(Ⅲ) doping improves the photodegradation of 2-CP. Among all supporting materials studied, SS(37 ${\mu}m)$ appears to be the best support. An optimal amount of doping material at 1.0 percent (w/w) of TiO2-substrate thin film gives the best photodegration of 2-CP.

Effect of Annealing on Structural and Electrical Properties of VOx Thin Films (VOx 박막의 구조적 특성과 전기적 특성에 대한 열처리 영향)

  • Lee, Jang Woo;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.471-475
    • /
    • 2006
  • $VO_x$ thin films with the thickness of 450 nm were prepared on a $Pt/Ti/SiO_{2}/Si$ substrate at room temperature by a reactive radio frequency (rf) magnetron sputtering method. The deposition rates of $VO_x$ thin films were investigated as a function of $O_{2}$ concentration and rf power. As the $O_{2}$ concentration in a $O_{2}/Ar$ mixture increased, the deposition rate decreased. However, the deposition rate increased with increasing rf power. The deposited $VO_x$ thin films were annealed at $450^{\circ}C$ for 2, 4, and 6 h in $O_{2}$ and $N_{2}$ ambient. After annealing, the phase changes of $VO_x$ thin films were investigated using X-ray diffraction analysis. The plane and cross-sectional views of $VO_x$ thin films before and after annealing were observed by field emission scanning electron microscopy. The metal-insulator transition (MIT) properties of $VO_x$ thin films were measured using current-voltage measurement. The excellent MIT properties were observed in $VO_x$ thin films annealed in $O_{2}$ ambient.

MBE-growth and Oxygen Pressure Dependent Electrical and Magnetic Properties of Fe3O4 Thin Films

  • Dung, Dang Duc;Feng, Wuwei;Sin, Yu-Ri-Mi;Thiet, Duong Van;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.60-60
    • /
    • 2011
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active research areas in spintronics. The high magnetoresistance and the high spin polarization (P) of electrons in the ferromagnetic electrodes of tunnel junction or intermediate layers are required. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, P ~ 100% spin polarization, and has a high Curie temperature (TC~850 K). Experiments demonstrated that the P~($80{\pm}5$)%, ~($60{\pm}5$)%, and ~40-55% for epitaxial (111), (110) and (001)-oriented Fe3O4 thin films, respectively. Epitaxial Fe3O4 films may enable us to investigate the effects of half metals on the spin transport without grain-boundary scattering.In addition, it has been reported that the Verwey transition (TV, a first order metal-insulator transition) of 120 K in bulk Fe3O4 is strongly affected by many parameters such as stoichiometry and stress, etc. Here we report that the growth modes, magnetism and transport properties of Fe3O4 thin films were strongly dependent on the oxygen pressure during film growth. The average roughness decreases from 1.021 to 0.263 nm for the oxygen pressure increase from $2.3{\times}10-7$ to $8.2{\times}10^{-6}$ Torr, respectively. The 120 K Verwey transition in Fe3O4 was disappeared for the sample grown under high oxygen pressure.

  • PDF

Magnetic Properties of Multilayered and Mixed $Pr_{0.65}$Ca_{0.35}MnO_3/La_{0.7}Sr_{0.3}MnO_3$ Films

  • V. G. Prokhorov;Lee, Y. P.;V. S. Flis;Park, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.67-69
    • /
    • 2003
  • The magnetic properties of single- and poly-crystalline $La_{0.7}Sr_{0.3}MnO_3/Pr_{0.65}Ca_{0.35}MnO_3$ multilayered (ML) films, and composite (CP) $(La_{0.7}Sr_{0.3})_{0.5}(Pr_{0.65}Ca_{0.35}_{0.5}MnO_3$ films, prepared by laser ablation, have been investigated in a wide temperature range. It was shown that the transformation from an incoherent to a coherent interface in the ML films leads to an enhancement of the ferromagnetic coupling between layers and to a single-phase magnetic transition. The amorphous CP films demonstrate a paramagnetic behavior of the magnetization with a sharp peak at $T_{G}\approx$45 K, which was interpreted as the formation of Griffiths phase. A short-term annealing at $750^{\circ}C$ induced the complete crystallization of film, and a recovery of the ferromagnetic and the metal-insulator transitions.

Study on The Electrical Characteristics of Chromium Oxide Film Produced by ton Beam Sputter Deposition (이온선 스퍼터 증착법에 의하여 제초된 CrOX의 전기적 특성에 관한 연구)

  • 조남제;장문식;이규용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.409-414
    • /
    • 1999
  • The influence of ion beam energy and reactive oxygen partial pressure on the electrical and crystallographic characteristics of transition metal oxide compound(Cr0x) film was studied in this paper. Chromium oxide films were prepared onto the coverglass using Ion Beam Sputter Deposition(1BSD) technique according to the processing conditions of the partial pressure of reactive oxygen gas and ion beam energy. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. As results, according to the XRD, XPS and resistivity measurement, the deposited films were the cermet type films which has a crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increasernent of the ion b m energy during the deposition process happened to decreasernent of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.

  • PDF

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF