Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.1.12

Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides  

Jung, Yeonjoon (Department of Material Science and Engineering, Yonsei University)
Ji, Eunji (Department of Material Science and Engineering, Yonsei University)
Capasso, Andrea (Department of Material Science and Engineering, Yonsei University)
Lee, Gwan-Hyoung (Department of Material Science and Engineering, Yonsei University)
Publication Information
Abstract
Recently, considerable progress and many breakthroughs have been achieved in the growth of two-dimensional materials, especially transition metal dichalcogenides (TMDCs), which attract significant attention owing to their unique properties originating from their atomically thin layered structure. Chemical vapor deposition (CVD) has shown great promise to fabricate large-scale and high-quality TMDC films with exceptional electronic and optical properties. However, the scalable growth of high-quality TMDCs by CVD is yet to meet industrial criteria. Therefore, growth mechanisms should be unveiled for a deeper understanding and further improvement of growth methods are required. This review summarizes the recent progress in the growth methods of TMDCs through CVD and other modified approaches to gain insights into the growth of large-scale and high-quality TMDCs.
Keywords
Two-dimensional materials; Transition metal dichalcogenides; Growth; Chemical vapor deposition; Coalescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, and R. Kitaura, "Direct Chemical Vapor Deposition Growth of WS2 Atomic Layers on Hexagonal Boron Nitride," ACS Nano, 8 [8] 8273-77 (2014).   DOI
2 Y. Zhang, Q. Ji, J. Wen, J. Li, C. Li, J. Shi, X. Zhou, K. Shi, H. Chen, and Y. Li, "Monolayer $MoS_2$ Dendrites on a Symmetry-Disparate $SrTiO_3$ (001) Substrate: Formation Mechanism and Interface Interaction," Adv. Funct. Mater., 26 [19] 3299-305 (2016).   DOI
3 J. Chen, X. Zhao, G. Grinblat, Z. Chen, S. J. Tan, W. Fu, Z. Ding, I. Abdelwahab, Y. Li, and D. Geng, "Homoepitaxial Growth of Large-Scale Highly Organized Transition Metal Dichalcogenide Patterns," Adv. Mater., 30 [4] 1704674 (2018).   DOI
4 X. Zhang, T. H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala, F. Zhang, N. Alem, G.-C. Wang, J. A. Robinson, and J. M. Redwing, "Diffusion-Controlled Epitaxy of Large Area Coalesced $WSe_2$ Monolayers on Sapphire," Nano Lett., 18 [2] 1049-56 (2018).   DOI
5 S. H. Choi, B. Stephen, J. H. Park, J. S. Lee, S. M. Kim, W. Yang, and K. K. Kim, "Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor," Sci. Rep., 7 [1] 1983 (2017).   DOI
6 T. Millner and J. Neugebauer, "Volatility of the Oxides of Tungsten and Molybdenum in the Presence of Water Vapour," Nature, 163 601-2 (1949).
7 J. Verble, T. Wietling, and P. Reed, "Rigid-Layer Lattice Vibrations and van der Waals Bonding in Hexagonal $MoS_2$," Solid State Commun., 11 [8] 941-44 (1972).   DOI
8 Y. Li, S. Hao, J. G. DiStefano, A. A. Murthy, E. D. Hanson, Y. Xu, C. Wolverton, X. Chen, and V. P. Dravid, "Site-Specific Positioning and Patterning of $MoS_2$ Monolayers: The Role of Au Seeding," ACS Nano, 12 [9] 8970-76 (2018).   DOI
9 Z. Wang, Q. Huang, P. Chen, S. Guo, X. Liu, X. Liang, and L. Wang, "Metal Induced Growth of Transition Metal Dichalcogenides at Controlled Locations," Sci. Rep., 6 38394 (2016).   DOI
10 X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, "Role of the Seeding Promoter in $MoS_2$ Growth by Chemical Vapor Deposition," Nano Lett., 14 [2] 464-72 (2014).   DOI
11 S.-L. Shang, G. Lindwall, Y. Wang, J. M. Redwing, T. Anderson, and Z.-K. Liu, "Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into $MoS_2$," Nano Lett., 16 [9] 5742-50 (2016).   DOI
12 S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, "Shape Evolution of Monolayer $MoS_2$ Crystals Grown by Chemical Vapor Deposition," Chem. Mater., 26 [22] 6371-79 (2014).   DOI
13 A. Govind Rajan, J. H. Warner, D. Blankschtein, and M. S. Strano, "Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers," ACS Nano, 10 [4] 4330-44 (2016).   DOI
14 S. M. Shinde, K. P. Dhakal, X. Chen, W. S. Yun, J. Lee, H. Kim, and J.-H. Ahn, "Stacking-Controllable Interlayer Coupling and Symmetric Configuration of Multilayered $MoS_2$," NPG Asia Mater., 10 e468 (2018).   DOI
15 G. Belton and A. Jordan, "The Volatilization of Molybdenum in the Presence of Water Vapor," J. Phys. Chem., 69 [6] 2065-71 (1965).   DOI
16 G. Belton and R. McCarron, "The Volatilization of Tungsten in the Presence of Water Vapor," J. Phys. Chem., 68 [7] 1852-56 (1964).   DOI
17 W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, and D. Shi, "Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer $MoS_2$," J. Am. Chem. Soc., 137 [50] 15632-35 (2015).   DOI
18 D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, and Z. Liu, and Y. Cui, "Few-Layer Nanoplates of $Bi_2Se_3$ and $Bi_2Te_3$ with Highly Tunable Chemical Potential," Nano Lett., 10 [6] 2245-50 (2010).   DOI
19 J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu, X. Zhou, P. Wang, X. Pan, K. Liu, and L. Jiao, "High-Mobility Multilayered $MoS_2$ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition," Adv. Mater., 29 [13] 1604540 (2017).   DOI
20 J. C. Park, S. J. Yun, H. Kim, J.-H. Park, S. H. Chae, S.-J. An, J.-G. Kim, S. M. Kim, K. K. Kim, and Y. H. Lee, "Phase-Engineered Synthesis of Centimeter-Scale 1T′-and 2H-Molybdenum Ditelluride Thin Films," ACS Nano, 9 [6] 6548-54 (2015).   DOI
21 S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D.-H. Choe, K. J. Chang, and K. Suenaga, "Phase Patterning for Ohmic Homojunction Contact in $MoTe_2$," Science, 349 [6248] 625-28 (2015).   DOI
22 S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, "Room Temperature Semiconductor-Metal Transition of $MoTe_2$ Thin Films Engineered by Strain," Nano Lett., 16 [1] 188-93 (2015).   DOI
23 Y. Li, K.-A. N. Duerloo, K. Wauson, and E. J. Reed, "Structural Semiconductor-to-Semimetal Phase Transition in Two-Dimensional Materials Induced by Electrostatic Gating," Nat. Commun., 7 10671 (2016).   DOI
24 Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, "Synthesis of Large-Area $MoS_2$ Atomic Layers with Chemical Vapor Deposition," Adv. Mater., 24 [17] 2320-25 (2012).   DOI
25 D. Cao, T. Shen, P. Liang, X. Chen, and H. Shu, "Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer $MoS_2$," J. Phys. Chem. C, 119 [8] 4294-301 (2015).   DOI
26 M. Saab and P. Raybaud, "Tuning the Magnetic Properties of $MoS_2$ Single Nanolayers by 3d Metals Edge Doping," J. Phys. Chem. C, 120 [19] 10691-97 (2016).   DOI
27 J. D. Cain, F. Shi, J. Wu, and V. P. Dravid, "Growth Mechanism of Transition Metal Dichalcogenide Monolayers: the Role of Self-Seeding Fullerene Nuclei," ACS Nano, 10 [5] 5440-45 (2016).
28 D. Zhu, H. Shu, F. Jiang, D. Lv, V. Asokan, O. Omar, J. Yuan, Z. Zhang, and C. Jin, "Capture the Growth Kinetics of CVD Growth of Two-Dimensional $MoS_2$," npj 2D Mater. Appl., 1 [1] 1-8 (2017).
29 G. H. Han, N. J. Kybert, C. H. Naylor, B. S. Lee, J. Ping, J. H. Park, J. Kang, S. Y. Lee, Y. H. Lee, and R. Agarwal, "Seeded Growth of Highly Crystalline Molybdenum Disulphide Monolayers at Controlled Locations," Nat. Commun., 6 [1] 6128 (2015).   DOI
30 J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, and J. Lei, "A Library of Atomically Thin Metal Chalcogenides," Nature, 556 355-59 (2018).   DOI
31 S. Li, Y.-C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.-M. Tang, J. Wang, and Q. Zhang, "Vapour-Liquid-Solid Growth of Monolayer $MoS_2$ Nanoribbons," Nat. Mater., 17 535-42 (2018).   DOI
32 S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, "Halide-Assisted Atmospheric Pressure Growth of Large $WSe_2\;and\;WS_2$ Monolayer Crystals," Appl. Mater. Today, 1 [1] 60-6 (2015).   DOI
33 Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, and B. I. Yakobson, "Vertical and In-Plane Heterostructures from $WS_2/MoS_2$ Monolayers," Nat. Mater., 13 1135-42 (2014).   DOI
34 A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, and Y. Yang, "Janus Monolayers of Transition Metal Dichalcogenides," Nat. Nanotechnol., 12 744-49 (2017).   DOI
35 Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y. H. Tsang, and Y. Chai, "Controllable Growth of Large-Size Crystalline $MoS_2$ and Resist-Free Transfer Assisted with a Cu Thin Film," Sci. Rep., 5 18596 (2015).   DOI
36 L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui, H. Chen, X. Li, and J.-B. Xu, "Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer $MoS_2$ Film with Spatial Homogeneity and the Visualization of Grain Boundaries," ACS Appl. Mater. Interfaces, 9 [13] 12073-81 (2017).   DOI
37 S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, "Vapor-Solid Growth of High Optical Quality $MoS_2$ Monolayers with Near-Unity Valley Polarization," ACS Nano, 7 [3] 2768-72 (2013).   DOI
38 A. M. Van Der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, "Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide," Nat. Mater., 12 554-61 (2013).   DOI
39 A. Aljarb, Z. Cao, H.-L. Tang, J.-K. Huang, M. Li, W. Hu, L. Cavallo, and L.-J. Li, "Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides," ACS Nano, 11 [9] 9215-22 (2017).   DOI
40 H. Ye, J. Zhou, D. Er, C. C. Price, Z. Yu, Y. Liu, J. Lowengrub, J. Lou, Z. Liu, and V. B. Shenoy, "Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments," ACS Nano, 11 [12] 12780-88 (2017).   DOI
41 H. Yu, M. Liao, W. Zhao, G. Liu, X. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, and K. Deng, "Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer $MoS_2$ Continuous Films," ACS Nano, 11 [12] 12001-7 (2017).   DOI
42 Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, and M. Kan, "Epitaxial Monolayer $MoS_2$ on Mica with Novel Photoluminescence," Nano Lett., 13 [8] 3870-77 (2013).   DOI
43 D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O'Regan, and F. J. Crowne, "Vertical 2D/3D Semiconductor Heterostructures based on Epitaxial Molybdenum Disulfide and Gallium Nitride," ACS Nano, 10 [3] 3580-88 (2016).   DOI
44 J. Zhang, M. Ye, S. Bhandari, A. K. M. Muqri, F. Long, S. Bigham, Y. K. Yap, and J. Y. Suh, "Enhanced Second and Third Harmonic Generations of Vertical and Planar Spiral $MoS_2$ Nanosheets," Nanotechnology, 28 [29] 295301 (2017).   DOI
45 J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, and L. Shi, "Janus Monolayer Transition-Metal Dichalcogenides," ACS Nano, 11 [8] 8192-98 (2017).   DOI
46 D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, "Synthesis of $MoS_2\;and\;MoSe_2$ Films with Vertically Aligned Layers," Nano Lett., 13 [3] 1341-47 (2013).   DOI
47 L. Zhang, K. Liu, A. B. Wong, J. Kim, X. Hong, C. Liu, T. Cao, S. G. Louie, F. Wang, and P. Yang, "Three-Dimensional Spirals of Atomic Layered $MoS_2$," Nano Lett., 14 [11] 6418-23 (2014).   DOI
48 J. Zhang, H. Yu, W. Chen, X. Tian, D. Liu, M. Cheng, G. Xie, W. Yang, R. Yang, and X. Bai, "Scalable Growth of High-Quality Polycrystalline $MoS_2$ Monolayers on $SiO_2$ with Tunable Grain Sizes," ACS Nano, 8 [6] 6024-30 (2014).   DOI
49 J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song, J. Kim, C.-S. Lee, S.-Y. Seo, and D.-H. Kim, "Coplanar Semiconductor-Metal Circuitry Defined on Few-Layer $MoTe_2$ via Polymorphic Heteroepitaxy," Nat. Nanotechnol., 12 1064-70 (2017).   DOI
50 T. A. Empante, Y. Zhou, V. Klee, A. E. Nguyen, I.-H. Lu, M. D. Valentin, S. A. Naghibi Alvillar, E. Preciado, A. J. Berges, and C. S. Merida, "Chemical Vapor Deposition Growth of Few-Layer $MoTe_2$ in the 2H, 1T′, and 1T Phases: Tunable Properties of $MoTe_2$ Films," ACS Nano, 11 [1] 900-5 (2017).   DOI
51 Y. Lee, J. Lee, H. Bark, I.-K. Oh, G. H. Ryu, Z. Lee, H. Kim, J. H. Cho, J.-H. Ahn, and C. Lee, "Synthesis of Wafer-Scale Uniform Molybdenum Disulfide Films with Control over the Layer Number Using a Gas Phase Sulfur Precursor," Nanoscale, 6 [5] 2821-26 (2014).   DOI
52 Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, "Wafer-Scale $MoS_2$ Thin Layers Prepared by $MoO_3$ Sulfurization," Nanoscale, 4 [20] 6637-41 (2012).   DOI
53 K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C.-J. Kim, D. Muller, and J. Park, "High-Mobility Three-Atom-Thick Semiconducting Films with Wafer-Scale Homogeneity," Nature, 520 656-60 (2015).   DOI