• 제목/요약/키워드: transition to turbulence

검색결과 121건 처리시간 0.032초

JCMT-CHIMPS2 Survey

  • Kim, Kee-Tae;Moore, Toby;Minamidani, Tetsuhiro;OscarMorata, OscarMorata;Rosolowski, Erik;Su, Yang;Eden, David
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.69.3-69.3
    • /
    • 2019
  • The CHIMPS2 survey is to extend the JCMT HARP $^{13}CO/C^{18}O$ J=3-2 Inner Milky-Way Plane Survey (CHIMPS) and the ${12}^CO$ J=3-2 survey (COHRS) into the inner Galactic Plane, the Central Molecular Zone (CMZ), and a section of the Outer Plane. When combined with the complementary $^{12}CO/^{13}CO/C^{18}O$ J=1-0 survey at the Nobeyama 45m (FUGIN) at matching 15" resolution and sensitivity, and other current CO surveys, the results will provide a complete set of transition data with which to calculate accurate column densities, gas temperatures and turbulent Mach numbers. These will be used to: analyze molecular cloud properties across a range of Galactic environments; map the star-formation efficiency (SFE) and dense-gas mass fraction (DGMF) in molecular gas as a function of position in the Galaxy and its relation to the nature of the turbulence within molecular clouds; determine Galactic structure as traced by molecular gas and star formation; constrain cloud-formation models; study the relationship of filaments to star formation; test current models of the gas kinematics and stability in the Galactic center region and the flow of gas from the disc. It will also provide an invaluable legacy data set for JCMT that will not be superseded for several decades. In this poster, we will present the current status of the CHIMPS2.

  • PDF

과팽창 노즐에서 발생하는 충격파 박리 패턴의 천이에 관한 연구 (A Study on the Transitional Shock Separation Patterns in an Over-Expanded Nozzle)

  • 이종성;;김희동
    • 한국추진공학회지
    • /
    • 제14권3호
    • /
    • pp.9-15
    • /
    • 2010
  • 과팽창 로켓노즐에서 발생하는 충격파 박리패턴의 천이 유동장을 예측하기 위해 축대칭 수치해석적연구를 수행하였다. 비정상, 압축성 N-S 방정식에 k-$\omega$ SST 난류모델을 적용하여, 유한 체적법으로 계산하였다. 종래의 실험적 연구 결과와 비교하였으며, 계산된 결과와 정성적으로 잘 일치하였다. 본 연구의 결과로부터 RSS에서 FSS로 천이할 때 가장 큰 횡력이 발생하며, 이는 비점성 제트 코어 영역에서 발생하는 Vortex ring의 발달로 기인됨을 예측하였다. 또한 엔진 시동과정과 정지과정에서 발생하는 히스테리시스 현상을 잘 모사하였다.

초음속 디퓨져 내부 역압력 구배에 대한 수치적 연구 (Numerical Study on the Adverse Pressure Gradient in Supersonic Diffuser)

  • 김종록
    • 한국추진공학회지
    • /
    • 제17권4호
    • /
    • pp.43-48
    • /
    • 2013
  • 초음속 디퓨져에서 천이구간에 대해서 수치적 기법에 의한 분석을 수행하였다. 수치기법으로는 초음속 디퓨져의 내부유동해석을 위하여 2차원 축대칭 Navier-Stokes equation와 $k-{\epsilon}$ 난류모델을 사용하였으며, 로켓엔진 연소실의 천이 구간의 압력변화에 따라서 디퓨져 내부의 마하수 및 진공챔버의 온도 분포를 비교 검토하였다. 초음속 디퓨져의 작동과정에서 진공챔버 내부에 연소가스가 유입되어지고 이러한 현상에 따라서 진공챔버 내부의 압력 및 온도가 상승하는 결과를 확인하였다. 이러한 유동현상에 따라서 천이과정에서 압력 및 온도 상승을 방지하는 시스템이 필요하다.

Flow patterns and related vibrations around an inclined U-profile

  • Johannes Strecha;Stanislav Pospisil;Herbert Steinruck
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.31-45
    • /
    • 2024
  • This paper examines the flow characteristics around an inclined prism with a U-shaped cross-section ("U-profile") and investigates the connection between the flow and flow-induced vibrations. The study employs a combined approach that involves wind tunnel experiments and computational fluid dynamics (CFD) using an unsteady Reynolds-averaged Navier-Stokes (RANS) turbulence model. Distinct vortex formation patterns are observed in the flow field surrounding the stationary inclined profile. When the cavity of the profile faces away from the incoming flow, large vortices develop behind the profile. Conversely, when the cavity is oriented towards the oncoming flow, these vortices form within the cavity. Notably, due to the slow movement of these large vortices through the cavity, the frequency at which vortices are shed in the negative inclination case is lower compared to the positive inclination, where they form in the wake. Wind tunnel experiments reveal an intermittent transition between the two vortex formation patterns at zero inclination. Large vortices sporadically emerge both in the cavity and behind the profile. The simulation results demonstrate that when these large vortices occur at a frequency close to the structure's natural frequency, they induce prominent pitch vibrations. This phenomenon is also sought after and presented in coupled vibration experiments. Additionally, the simulations indicate that when the natural frequency of the structure is considerably lower than the vortex shedding frequency, this type of vibration can be observed.

피칭운동을 고려한 우주발사체 형상의 천음속 비정상 유동해석 (UNSTEADY AERODYNAMIC ANALISES OF SPACE ROCKET CONFIGURATION CONSIDERING PITCHING MOTION)

  • 김동현;김요한;김동환;윤세현;김광수;장영순;김수현
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. Before performing the coupled fluid-structure transonic aeroealstic simulations transonic aerodynamic characteristics are investigated for the pitching motions of the rocket at finite angle-of-attack. An unsteady CFD analysis method with a moving grid technique based on the Reynolds-averaged Navier-Stokes equations with the k-w SST transition turbulence model is applied to accurately predict the transonic loads of the rocket at pitching motion. It is shown that the fluctuating amplitude of the lateral aerodynamic loads imposed on the rocket due to the pitching motion can be significantly increased in the transonic flow region.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou;Guo, Chun-Yu;Su, Yu-Min;Wu, Tie-Cheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.212-224
    • /
    • 2018
  • The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

축대칭 핀틀노즐의 3차원 효과 분석 (Three-dimensional Effects of an Axi-symmetric Pintle Nozzle)

  • 이강민;성홍계
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.47-55
    • /
    • 2018
  • 축 대칭 형상의 핀틀 노즐에서 3차원 효과 여부를 파악하기 위하여 3차원 수치해석을 수행하였다. 초음속 노즐을 통해 배출되는 압축성 유동을 정확히 예측하기 위해 k-${\omega}$ SST 난류 모델에 압축성 보정 모델을 결합하였다. 핀틀의 전단과 후단에서 재순환 영역이 관찰되었으며, 노즐을 통해 분출되는 유동은 복잡한 충격파 구조를 형성하였다. 각 핀틀 위치에서 2차원 축대칭과 3차원의 수치해석 결과를 실험데이터와 비교해 볼 때 3차원 결과가 접선 방향 유동의 3차원 효과로 인해 유동 박리 위치와 박리로 인한 압력 상승 변화과정을 정확히 예측하였다.

Numerical Investigation on detonation combustion waves of hydrogen-air mixture in pulse detonation combustor with blockage

  • Pinku Debnath;K.M. Pandey
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.203-222
    • /
    • 2023
  • The detonation combustion is a supersonic combustion process follows on shock wave oscillations in detonation tube. In this paper numerical studies are carried out combined effect of blockage ratio and spacing of obstacle on detonation wave propagation of hydrogen-air mixture in pulse detonation combustor. The deflagration to detonation transition of stoichiometric (ϕ=1)fuel-air mixture in channel has been analyzed for effect of blockage ratio (BR)=0.39, 0.51, 0.59, 0.71 with spacing of 2D and 3D. The reactive Navier-Stokes equation is used to solve the detonation wave propagation mechanism in Ansys Fluent platform. The result shows that fully developed detonation wave initiation regime is observed near smaller vortex generator ratio of BR=0.39 inside the combustor. The turbulent rate of reaction has also a great significance role for shock wave structure. However, vortices of rapid detonation wave are appears near thin boundary layer of each obstacle. Finally, detonation combustor demonstrates the superiority of pressure gain combustor with turbulent rate of reaction of 0.6 kg mol/m3 -s inside the detonation tube with obstacle spacing of 12 cm, this blockage enhanced the turbulence intensity and propulsive thrust. The successful detonation wave propagation speed is achieved in shortest possible time of 0.031s with a significance magnitude of 2349 m/s, which is higher than Chapman-Jouguet (C-J) velocity of 1848 m/s. Furthermore, stronger propulsive thrust force of 36.82 N is generated in pulse time of 0.031s.

풍력 발전기용 블레이드 공력해석에 대한 연구 (A Study of Aerodynamic Analysis for the Wind Turbine Rotor Blade using a general CFD code)

  • 박상규;김진범;김태우;여창호;권기영;오시덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.516-520
    • /
    • 2009
  • This study describes aerodynamic characteristics for the HAWT (Horizontal Axis Wind Turbine) rotor blade using general CFD(Computational Fluid Dynamics) code. The boundary conditions for analysis are validated with the experimental result by the NREL (National Renewable Energy Laboratory)/NASA Ames wind tunnel test for S809 airfoil. In the case of wind turbine rotor blade, complex phenomena are appeared such as flow separation and re-attachment. Those are handled by using a commercial flow analysis tool. The 2-equation k-$\omega$ SST turbulence model and transition model appear to be well suited for the prediction. The 3-dimensional phenomena in the HAWT rotor blade is simulated by a commercial 3-D aerodynamic analysis tool. Tip vortex geometry and Radial direction flows along the blade are checked by the analysis.

  • PDF