• Title/Summary/Keyword: transition element

Search Result 347, Processing Time 0.024 seconds

Analysis of the Dual Promoters and the $H_2O$$_2$-responsive Element of the cats Gene Encoding Catalase A in Streptomyces coelicolor

  • Cho, You-Hee;Hahn, Ji-Sook;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.239-244
    • /
    • 2000
  • The cats gene encodes the major catalase in Sreptomyces coelicolor, whose production increases upon H$_2$O$_2$treatment. Besides the previously identified primary promoter (catApl), a minor promoter (catAp2) was newly assigned by S1 nuclease mapping. The catAp2 transcript was observed transiently upon entry into the stationary phase in liquid culture and upon differentiation on solid plates, whereas the level of catApl transcription did not chance significantly during this growth transition. ThecatApl promoter was transcribed by the major vegetative RNA polymerase holoenzyme containing $\sigma$$\^$HrdB/, whereas the catAp2 was transcribed in vitro by the holoenzyme containing $\sigma$$\^$R/ that is activated under oxidative conditions. The cia-element regulating the H$_2$O$_2$-inducibility of catApl was identified within the 23 bp inverted repeat sequence located between -65 and -43 of the catApl promoter. We roamed this sequence HRE (H$_2$O$_2$-responsive Element). The distal half of the inverted repeat was more crucial for H$_2$O$_2$-dependent induction of the catApl transcript than the proximal half. HRE most likely serves as a binding site for the H$_2$O$_2$-responsive repressor CatR.

  • PDF

A numerical method for estimating the elastic modulus of recycled concrete

  • Zhou, Xinzhu;Zheng, Jianjun;Chen, Ting;Zhang, Jian;Wang, Chuanyang;Wu, Jiefeng
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.161-170
    • /
    • 2019
  • This paper aims at presenting a numerical method for estimating the elastic modulus of recycled concrete with crushed aggregates. In the method, polygonal aggregates following a given sieve curve are generated, and placed into a square simulation element with the aid of the periodic boundary condition and the overlap criterion of two polygonal aggregates. The mesostructure of recycled concrete is reconstructed by embedding an old interfacial transition zone (ITZ) layer inside each recycled aggregate and by coating all the aggregates with a new ITZ layer. The square simulation element is discretized into a regular grid and a representative point is selected from each sub-element. The iterative method is combined with the fast Fourier transform to evaluate the elastic modulus of recycled concrete. After the validity of the numerical method is verified with experimental results, a sensitivity analysis is conducted to evaluate the effects of key factors on the elastic modulus of recycled concrete. Numerical results show that the elastic modulus of recycled concrete increases with the increase of the total aggregate content and the elastic moduli of old and new ITZ but decreases with increasing the replacement ratio of recycled aggregate and the thicknesses of old and new ITZ. It is also shown that, for a replacement ratio of recycled aggregate smaller than 0.3, the elastic modulus of recycled concrete is reduced by no more than 10%.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Evaluation of Temper Embrittlement Effect and Segregation Behaviors on Ni-Mo-Cr High Strength Low Alloy RPV Steels with Changing P and Mn Contents (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 P, Mn 함량에 따른 템퍼 취화거동 및 입계편석거동 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.122-132
    • /
    • 2010
  • Higher strength and fracture toughness of reactor pressure vessel steels can be obtained by changing the material specification from that of Mn-Mo-Ni low alloy steel (SA508 Gr.3) to Ni-Mo-Cr low alloy steel (SA508 Gr.4N). However, the operation temperature of the reactor pressure vessel is more than $300^{\circ}C$ and the reactor operates for over 40 years. Therefore, we need to have phase stability in the high temperature range in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel. It is very important to evaluate the temper embrittlement phenomena of SA508 Gr.4N for an RPV application. In this study, we have performed a Charpy impact test and tensile test of SA508 Gr.4N low alloy steel with changing impurity element contents such as Mn and P. And also, the mechanical properties of these low alloy steels after longterm heat treatment ($450^{\circ}C$, 2000hr) are evaluated. Further, evaluation of the temper embrittlement by fracture analysis was carried out. Temper embrittlement occurs in KL4-Ref and KL4-P, which show a decrease of the elongation and a shifting of the transition curve toward high temperature. The reason for the temper embrittlement is the grain boundary segregation of the impurity element P and the alloying element Ni. However, KL4-Ref shows temper embrittlement phenomena despite the same contents of P and Ni compared with SC-KL4. This result may be caused by the Mn contents. In addition, the behavior of embrittlement is not largely affected by the formation of $M_3P$ phosphide or the coarsening of Cr carbides.

Finite Element Analysis of the Reinforced Concrete Boundary-Beam-Wall System Subjected to Axial Load (축하중이 작용하는 RC 경계보-벽체 시스템의 해석적 평가)

  • Son, Hong-Jun;Kim, Seung-Il;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • In Korea, one of the most used structural systems for residential apartment buildings is the combination of the reinforced concrete (RC) wall and rahmen structures in the upper and lower floors, respectively. To alleviate the significant difference between the stiffnesses of these two structural systems, large transfer girders are generally required in the transition zone of the structure, which then results in the use of large amounts of construction materials and low economic feasibility. This paper proposes a new RC boundary-beam-wall system that can minimize the disadvantages of the RC transfer girder system. The structural performance of the proposed system subjected to axial loading was evaluated via rigorous three-dimensional nonlinear finite element analysis. Four parameters, namely the ratio of lower wall to upper wall lengths, distance between stirrups, main bar slope ratio, and slab length, were considered in the finite element analysis, and their effects on the maximum axial load were analyzed and discussed.

Improvement of Birefringence Characteristics of Injection-Molded Plastic Parts by Rapid Heating (급속 가열에 의한 사출성형품의 복굴절특성 개선)

  • Park, Keun;Kim, Byung-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.195-198
    • /
    • 2007
  • The present work focuses on the prediction of birefringence in injection-molded plastic part and its improvement by rapid mold heating. To calculate birefringence, flow-induced residual stress is computed through a fully three-dimensional injection molding analysis. Then the stress-optical law is applied from which the order of birefringence can be evaluated and visualized. The birefringence patterns are predicted for a rectangular plate with a variation of mold temperatures, which shows that the amount of molecular orientation and birefringence level decreases with an increase of mold temperature. The effect of mold temperature on the order of birefringence is also studied for a thin-walled rectangular strip, and compared with experimental measurements. Both predicted and experimental patterns of birefringence are in agreements on the observation that the birefringence level diminishes significantly when the mold temperature is raised to above the glass transition temperature.

  • PDF

A Design on the chassis frame of passenger car using beam and spring Elements (빔과 스프링 요소를 이용한 승용차의 차체 프레임 설계)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.89-96
    • /
    • 1999
  • This paper presents the optimization design technique on the joint stiffness and section characteristic factors of chassis frame, by using beam and spring elements in a given design package. Two correction methods are used for the optimization design of chassis frame. First is the equivalent inertia of moment method in relation to the section characteristic factors of joint zones, which are thickness , width and height of frame channel section. Second is the rotational spring element with joint stiffness of joint zones. The CAE example shows that the relationship of section characteristic factors and joint stiffness can effectively be used in designing chassis frame. In this point, if static and dynamic targets are given, the joint-zone and section characteristic factors of chassis frame intended may be designed and defined by using beam and rotational spring elements.

  • PDF

Wideband 4×8 Array Antennas with Aperture Coupled Patch Antenna Elements on LTCC

  • Jun, Dong-Suk;Bondarik, Alexander;Lee, Hong-Yeol;Ryu, Han-Cheol;Paek, Mun-Cheol;Kang, Kwang-Yong;Choi, Ik-Guen
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.150-157
    • /
    • 2010
  • We proposed a $4{\times}8$ array antenna with aperture-coupled patch antenna elements. The antenna was designed for 60 GHz operation and fabrication on the low-temperature cofired ceramic(LTCC) substrate($\varepsilon_r$=5.8). The feedline with the stub was designed to enhance the radiating element bandwidth and the transition characteristics between the waveguide (WG) and microstrip line(MSL). Through the optimization of the antenna and feedline geometry, the antenna gain and the performance of the 10 dB bandwidth were 20.2 dBi and 13 % up, respectively. The measured results agreed with the simulated ones.

Effect of Alloying Elements on the Glass Forming Ability of Zr-Ti-Cu-Ni-X Alloys (Zr-Ti-Cu-Ni-X계 합금의 첨가원소에 따른 비정질 형성능)

  • Choi, Chul-Jin
    • Journal of Korea Foundry Society
    • /
    • v.21 no.5
    • /
    • pp.286-289
    • /
    • 2001
  • The glass formation behavior was investigated in the melt spun Zr-Ti-Cu-Ni-X (X=B, P and Si) ribbons. The magnitude of supercooled liquid region of Zr-Ti-Cu-Ni alloy increased with an addition of alloying element. The glass transition temperature and the crystallization temperature increased and the magnitude of supercooled liquid region decreased with increasing the content of alloying elements. The largest supercooled liquid region was observed in the Si containing alloy. This is believed to be due to the dense atom packing with the optimum atomic size ratio of constituent elements.

  • PDF

Trace elements analysis in some medicinal plants using graphite furnace-atomic absorption spectroscopy

  • Anal, Jasha Momo H.;Chase, Petevino
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.247-255
    • /
    • 2016
  • Ten trace elements (Mg, Ca, V, Cr, Mn, Fe, Cu, Zn, Mo, and Cd) were determined in seven traditionally used wild medicinal plants of the Nagas in the North-East India viz Cynoglossum furcatum Wallich, Elsholtzia blanda Bentham, Lycopodium cernuum Linnaeus, Potentilla fulgens Wallich ex Hooker, Swertia macrosperma C.B. Clarke, Thalictrum foliolosum DC and Valeriana jatamansi Jones. Plant samples were dried, weighed, digested and analyzed for their mineral distribution level ranging from trace to major elements by graphite furnace-atomic absorption spectroscopy. All the medicinal herbs studied were found to contain the ten elements analyzed. The elemental concentration is given in mg/kg. Mg and Ca are present in high concentrations in both the roots and leaves of the plant samples. Among trace transition metals Fe had the highest concentration, followed by Mn, Cr, Cu, V, Zn, and Mo. Analysis showed that the toxic Cd element was at a lower concentration and is within the permissible limit of FAO/WHO, California standards and United States Pharmacopeia Limit for Nutritional Supplements.