• Title/Summary/Keyword: transient receptor potential vanilloid2

Search Result 32, Processing Time 0.026 seconds

Oxidation of extracellular cysteines by mercury chloride reduces TRPV1 activity in rat dorsal root ganglion neurons

  • Jin, Yun-Ju;Park, Jin-Young;Kim, Jun;Kwak, Ji-Yeon
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.181-187
    • /
    • 2011
  • Transient receptor potential vanilloid type 1 (TRPV1) receptor plays an important role as a molecular detector of noxious signals in primary sensory neurons. Activity of TRPV1 can be modulated by the change in the environment such as redox state and extracellular cations. In the present study, we investigated the effect of the mercury chloride ($HgCl_2$) on the activity of TRPV1 in rat dorsal root ganglia (DRG) neurons using whole-cell patch clamp technique. Extracellular $HgCl_2$ reversibly reduced the magnitudes of capsaicin-activated currents ($I_{cap}$) in DRG neurons in a dose-dependent manner. The blocking effect of $HgCl_2$ was prevented by pretreatment with the reducing agent dithiothreitol (DTT). Inhibition of $I_{cap}$ by $HgCl_2$ was abolished by point mutation of individual cysteine residues located on the extracellular surface of TRPV1. These results suggest that three extracellular cysteines of TRPV1, Cys616, Cys634 and Cys621, are responsible for the oxidative modulation of $I_{cap}$ by $HgCl_2$.

Curcumin supplementation and delayed onset muscle soreness (DOMS): effects, mechanisms, and practical considerations

  • Yoon, Wan-Young;Lee, Kihyuk;Kim, Jooyoung
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.39-43
    • /
    • 2020
  • [Purpose] In this literature review we aimed to investigate the effects of curcumin supplementation on delayed onset muscle soreness (DOMS), which occurs after exercise, and evaluate related parameters to propose practical recommendations for the field of exercise physiology. [Methods] Experimental studies conducted on curcumin supplementation and DOMS were systematically reviewed to determine (1) the effect of curcumin supplementation on DOMS, (2) potential mechanisms by which curcumin supplementation may attenuate DOMS, and (3) practical considerations for curcumin supplementation. [Results] While several studies have reported that curcumin supplementation attenuates DOMS after exercise, others have reported that curcumin supplementation has no effect on DOMS. Several mechanisms have been proposed by which curcumin supplementation may attenuate DOMS; the most probable of which is a reduction in inflammatory response. Other potential mechanisms include modulation of transient receptor potential vanilloid 1 (TRPV1) or changes in post-exercise capillary lactate levels; these require further examination. The usual recommended dose of curcumin is 150-1500 mg daily (sometimes up to 5 g), divided into 2-3 portions and taken before and after exercise. It is not necessary to take curcumin together with piperine. [Conclusion] Although conflicting results regarding the effects of curcumin supplementation on DOMS exist in literature, it may be considered as a method of nutritional intervention for reducing post-exercise DOMS.

Oxytocin produces thermal analgesia via vasopressin-1a receptor by modulating TRPV1 and potassium conductance in the dorsal root ganglion neurons

  • Han, Rafael Taeho;Kim, Han-Byul;Kim, Young-Beom;Choi, Kyungmin;Park, Gi Yeon;Lee, Pa Reum;Lee, JaeHee;Kim, Hye young;Park, Chul-Kyu;Kang, Youngnam;Oh, Seog Bae;Na, Heung Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • Recent studies have provided several lines of evidence that peripheral administration of oxytocin induces analgesia in human and rodents. However, the exact underlying mechanism of analgesia still remains elusive. In the present study, we aimed to identify which receptor could mediate the analgesic effect of intraperitoneal injection of oxytocin and its cellular mechanisms in thermal pain behavior. We found that oxytocin-induced analgesia could be reversed by $d(CH_2)_5[Tyr(Me)^2,Dab^5]$ AVP, a vasopressin-1a (V1a) receptor antagonist, but not by $desGly-NH_2-d(CH_2)_5[D-Tyr^2,Thr^4]OVT$, an oxytocin receptor antagonist. Single cell RT-PCR analysis revealed that V1a receptor, compared to oxytocin, vasopressin-1b and vasopressin-2 receptors, was more profoundly expressed in dorsal root ganglion (DRG) neurons and the expression of V1a receptor was predominant in transient receptor potential vanilloid 1 (TRPV1)-expressing DRG neurons. Fura-2 based calcium imaging experiments showed that capsaicin-induced calcium transient was significantly inhibited by oxytocin and that such inhibition was reversed by V1a receptor antagonist. Additionally, whole cell patch clamp recording demonstrated that oxytocin significantly increased potassium conductance via V1a receptor in DRG neurons. Taken together, our findings suggest that analgesic effects produced by peripheral administration of oxytocin were attributable to the activation of V1a receptor, resulting in reduction of TRPV1 activity and enhancement of potassium conductance in DRG neurons.

Activation of transient receptor potential vanilloid 3 by the methanolic extract of Schisandra chinensis fruit and its chemical constituent γ-schisandrin

  • Nam, Yuran;Kim, Hyun Jong;Kim, Young-Mi;Chin, Young-Won;Kim, Yung Kyu;Bae, Hyo Sang;Nam, Joo Hyun;Kim, Woo Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.309-316
    • /
    • 2017
  • Transient receptor potential vanilloid 3 (TRPV3) is a non-selective cation channel with modest permeability to calcium ions. It is involved in intracellular calcium signaling and is therefore important in processes such as thermal sensation, skin barrier formation, and wound healing. TRPV3 was initially proposed as a warm temperature sensor. It is activated by synthetic small-molecule chemicals and plant-derived natural compounds such as camphor and eugenol. Schisandra chinensis (Turcz.) Baill (SC) has diverse pharmacological properties including antiallergic, anti-inflammatory, and wound healing activities. It is extensively used as an oriental herbal medicine for the treatment of various diseases. In this study, we investigated whether SC fruit extracts and seed oil, as well as four compounds isolated from the fruit can activate the TRPV3 channel. By performing whole-cell patch clamp recording in HEK293T cells overexpressing TRPV3, we found that the methanolic extract of SC fruit has an agonistic effect on the TRPV3 channel. Furthermore, electrophysiological analysis revealed that ${\gamma}$-schisandrin, one of the isolated compounds, activated TRPV3 at a concentration of $30{\mu}M$. In addition, ${\gamma}$-schisandrin (${\sim}100{\mu}M$) increased cytoplasmic $Ca^{2+}$ concentrations by approximately 20% in response to TRPV3 activation. This is the first report to indicate that SC extract and ${\gamma}$-schisandrin can modulate the TRPV3 channel. This report also suggests a mechanism by which ${\gamma}$-schisandrin acts as a therapeutic agent against TRPV3-related diseases.

Expression of TRPV1 and iNOS in the Dorsal Root Ganglion Exposed by Autologous Nucleus Pulposus in the Rat

  • Kim, Su-Jeong;Seo, Jeong-Min;Cho, Yun-Woo;Park, Hea-Woon;Lee, Joon-Ha;Hwang, Se-Jin;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • Purpose: To determine whether upregulation of inducible nitric oxide synthase (iNOS) transcription and translation is related to radicular pain in a model of lumbar disc herniation. Also, to investigate the temporal changes of mRNA expression of iNOS and the identity of iNOS and transient receptor potential vanilloid (TRPV) 1 channel expression cells in dorsal root ganglion (DRG) of a model of lumbar disc herniation. Methods: A lumbar disc herniated rat model was developed by implantation of the autologous nucleus pulposus, harvested from the coccygeal vertebra of each tail, on the left L5 nerve root just proximal to the DRG. Rats were tested for mechanical allodynia of the plantar surface of both hind paws 2 days before surgery and 1, 5, 10, 20 and 30 days postoperatively. Reverse transcription polymerase chain reaction (RT-PCR) was used to follow iNOS mRNA expression. To stain iNOS and TRPV1 in DRG, an immunohistochemical study was done 10 days after surgery. Results: A significant drop in mechanical withdrawal threshold on the ipsilateral and contralateral hind paws was observed 1 day after surgery and was prolonged to 30 days in rats with lumbar disc herniation. The expression of mRNA for iNOS peaked at postoperative day 10 on both sides of the DRG. iNOS-positive sensory neurons in the DRG varied in size from large to small diameter cells. A majority of small and intermediate sensory neurons were TRPV1-positive cells. Double immunofluorescence staining for TRPV1 and iNOS revealed that most intermediate TRPV1-positive sensory neurons co-localized with iNOS-positive neurons. Conclusion: Nucleus pulposus-induced mechanical allodynia can be generated without mechanical compression. This pain is related to temporal changes in expression of iNOS mRNA in the DRG. Co-localization of TRPV1 and iNOS in intermediate neurons of the DRG is correlated with pain modality and intensity.

Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons

  • Li, Hai Ying;Lee, Byung-Ky;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.315-321
    • /
    • 2008
  • Eugenol is widely used in dentistry to relieve pain. We have recently demonstrated voltage-gated $Na^+$ and $Ca^{2+}$ channels as molecular targets for its analgesic effects, and hypothesized that eugenol acts on $P2X_3$, another pain receptor expressed in trigeminal ganglion (TG), and tested the effects of eugenol by whole-cell patch clamp and $Ca^{2+}$ imaging techniques. In the present study, we investigated whether eugenol would modulate 5'-triphosphate (ATP)-induced currents in rat TG neurons and $P2X_3$-expressing human embryonic kidney (HEK) 293 cells. ATP-induced currents in TG neurons exhibited electrophysiological properties similar to those in HEK293 cells, and both ATP- and $\alpha$, $\beta$-meATP-induced currents in TG neurons were effectively blocked by TNP-ATP, suggesting that $P2X_3$ mediates the majority of ATP-induced currents in TG neurons. Eugenol inhibited ATP-induced currents in both capsaicin-sensitive and capsaicin-insensitive TG neurons with similar extent, and most ATP-responsive neurons were IB4-positive. Eugenol inhibited not only $Ca^{2+}$ transients evoked by $\alpha$, $\beta$-meATP, the selective $P2X_3$ agonist, in capsaicin-insensitive TG neurons, but also ATP-induced currents in $P2X_3$-expressing HEK293 cells without co-expression of transient receptor potential vanilloid 1 (TRPV1). We suggest, therefore, that eugenol inhibits $P2X_3$ currents in a TRPV1-independent manner, which contributes to its analgesic effect.

The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1

  • Lee, Run-Jeoung;Shin, Sung-Hwa;Chun, Jae-Sun;Hyun, Sung-Hee;Kim, Yang-Mi;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.99-114
    • /
    • 2010
  • With the consensus sequence information of the serum glucocorticoid-induced protein kinase-1 (SGK1) phosphorylation site {R-X-R-X-X-(S/T)$\Phi$; where $\Phi$ is any hydrophobic amino acid}, we noticed that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, harbors the putative SGK1 phosphorylation site (on its Ser 824). We have demonstrated that TRPV4 is an SGK1 authentic substrate protein, with the phosphorylation on the Ser 824 of TRPV4 by SGK1. Further, using TRPV4 mutants (S824A and S824D), we noted that the modification of the Ser 824 activates its $Ca^{2+}$ entry, and sensitizes the TRPV4 channel to 4-$\alpha$-phorbol 12,13-didecanoate (4-${\alpha}PDD$) or heat, simultaneously enhancing its active state. Additionally, we determined that the modification of the Ser 824 controls both its plasma membrane localization and its protein interactions with calmodulin. Thus, we have proposed herein that phosphorylation on the Ser 824 of TRPV4 is one of the control points for the regulation of its functions.

Activation of the cGMP/Protein Kinase G Pathway by Nitric Oxide Can Decrease TRPV1 Activity in Cultured Rat Dorsal Root Ganglion Neurons

  • Jin, Yun-Ju;Kim, Jun;Kwak, Ji-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.211-217
    • /
    • 2012
  • Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents ($I_{cap}$). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on $I_{cap}$. Membrane-permeable cGMP analogs, 8-bromoguanosine 3', 5'-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on $I_{cap}$. The PKG inhibitor KT5823 prevented the inhibition of $I_{cap}$ by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Molecular Characterization of $Ca_v2.3$ in Rat Trigeminal Ganglion Neurons

  • Fang, Zhi;Kim, Joong-Soo;Oh, Seog-Bae
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • R-type($Ca_v2.3$) calcium channel contributes to pain sensation in peripheral sensory neurons. Six isoforms of $Ca_v2.3$ that result from combinations of presence or deletion of three inserts(insert I and insert in the II-III loop, and insert III in N-terminal regions) have been demonstrated to be present in different mammalian tissues. However, the molecular basis of $Ca_v2.3$ in trigeminal ganglion(TG) neurons is not known. In the present study, we determined which isoforms of $Ca_v2.3$ are expressed in rat TG neurons using the RT-PCR analysis. Whole tissue RT-PCR analyses revealed that only two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, were present in TG neurons. From single-cell RT-PCR, we found that $Ca_v2.3e$ rather than $Ca_v2.3a$ was the major isoform expressed in TG neurons, and $Ca_v2.3e$ was preferentially detected in small-sized neurons that express nociceptive marker, transient receptor potential vanilloid 1(TRPV1). Our results suggest that $Ca_v2.3e$ in trigeminal neurons may be a potential target for the pain treatment.