• Title/Summary/Keyword: transient heat transfer

Search Result 431, Processing Time 0.032 seconds

Transient heat transfer analysis using Galerkin finite element method for reinforced concrete slab exposed to high elevated temperature

  • Han, Byung-Chan;Kwon, Young-Jin;Lee, Byung-Jae;Kwon, Seung-Jun;Chae, Young-Suk
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1097-1112
    • /
    • 2016
  • Fire loading causes a critical collapse of RC (Reinforced Concrete) Structures since the embedded steels inside are relative week against high elevated temperature. Several numerical frameworks for fire resistance have been proposed, however they have limitations such as unstable convergence and long calculation period. In the work, 2-D nonlinear FE technique is proposed using Galerkin method for RC structures under fire loading. Closed-form element stiffness with a triangular element is adopted and verified with fire test on three RC slabs with different fire loading conditions. Several simulations are also performed considering fire loading conditions, water contents, and cover depth. The proposed numerical technique can handle time-dependent fire loading, convection, radiation, and material properties. The proposed technique can be improved through early-aged concrete behavior like moisture transport which varies with external temperature.

Multiphase Flow Modeling of Molten Material-Vapor-Liquid Mixtures in Thermal Nonequilibrium

  • Park, Ik-Kyu;Park, Goon-Cherl;Bang, Kwang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.553-561
    • /
    • 2000
  • This paper presents a numerical model of multi phase flow of the mixtures of molten material-liquid-vapor, particularly in thermal nonequilibrium. It is a two-dimensional, transient, three-fluid model in Eulerian coordinates. The equations are solved numerically using the finite difference method that implicitly couples the rates of phase changes, momentum, and energy exchange to determine the pressure, density, and velocity fields. To examine the model's ability to predict an experimental data, calculations have been performed for tests of pouring hot particles and molten material into a water pool. The predictions show good agreement with the experimental data. It appears, however, that the interfacial heat transfer and breakup of molten material need improved models that can be applied to such high temperature, high pressure, multi phase flow conditions.

  • PDF

Effect of Dispersion Technique on Heat Transfer Properties of Transformer Oil with Nanoparticles (변압기 나노절연유의 열전달특성에 미치는 분산기술의 영향)

  • Song, Hyun-Woo;Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.151-152
    • /
    • 2005
  • Both $Al_2O_3$ and AlN nanopowders with diameters from ${\mu}m$ to mm were bead-milled and surface-modified by stabilizing agent. The size of bead-milled nanoparticles compared with the primary powder was effectively decreased and was dependent on milling time and bead size. The results of dispersion stability analysis indicated that chemical bonding between nanoparticles and surfactant is more effective than chemical adsorption to prepare the stable transformer oils containing nanoparticles. In this study, the thermal conductivity of the transformer oils containing nanoparticles was measured by transient hot-wire and laser flash methods.

  • PDF

Power Control of Induction Heating Process for TR forging (TR 단조를 위한 유도 가열 공정의 전력제어)

  • Song M. C.;Ju S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.230-233
    • /
    • 2004
  • The purpose of this study is to establish the optimal induction heating conditions of various preform types used for TR forging. The finite element model coupled electro-magnetic and transient heat transfer was employed to evaluate the distribution of temperature at the billet. Power control method was applied to control temperature of preform in induction heating because TR forging is not a continuous process. Power schedule that consists of heating and holding stage was suggested. In heating stage, power is inversely proportional to diameter of preform but the time of heating stage is directly proportional to the diameter of preform. But, in holding stage, the required power for thermal equilibrium per unit volume of the billet decreases with an increase in a diameter of billet due to the increase of efficiency.

  • PDF

Heat transfer analysis of steel plate by moving coil in induction heating process (이동하는 유도가열 코일에 의한 강판의 열 유동 해석)

  • Yun, Jin-O;Yang, Yeong-Su;Gang, Dae-Hyeon
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.126-128
    • /
    • 2005
  • This paper presents a 3-D finite element analysis of a magneto-thermal coupled problem with moving conductor. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Transient finite element method for analysis of moving conductor needs many number of elements and much time to make calculation. Therefore, in this paper, finite element formulation derived from quasi-state is adopted. Finite element results were compared with the experimental results. The results demonstrate that this approach is suitable to solve the magneto-thermal coupled problem.

  • PDF

Transient Characteristic of a Metal-Oxide Semiconductor Field Effect Transistor in an Automotive Regulator in High Temperature Surroundings

  • Kang, Chae-Dong;Shin, Kye-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.178-181
    • /
    • 2010
  • An automotive IC voltage regulator which consists of one-chip based on a metal-oxide semiconductor field effect transistor (MOSFET) is investigated experimentally with three types of packaging. The closed type is filled with thermal silicone gel and covered with a plastic lid on the MOSFET. The half-closed type is covered with a plastic case but without thermal silicone gel on the MOSFET. Opened type is no lid without thermal silicone gel. In order to simulate the high temperature condition in engine bay, the operating circuit of the MOSFET is constructed and the surrounding temperature is maintained at $100^{\circ}C$. In the overshoot the maximum was mainly found at the half-closed packaging and the magnitude is dependent on the packaging type and the surrounding temperature. Also the impressed current decreased exponentially during the MOSFET operation.

The Simulation of Semicale Natural Circulation Test 5-NC-3,S-NC-4 Using RELAP5/Mod3.1

  • Kim, S. N.;W. H. Jang
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.424-434
    • /
    • 1998
  • RELAP5/Mod3.1 code was assessed with the semiscale experiment S-NC-3, and S-NC-4, which simulated the two-phase natural circulation and reflux condensation for the SBLOCA of PWR, respectively . Test S-NC-3 and S-NC-4 calculation results showed that RELAP5/Mod3.1 quite well describes the influence of steam generator secondary side heat transfer degradation on both two-phase natural circulation and reflux condensation. A comparison between the calculated and measured two-phase mass flow rate in test S-NC-3 shows good agreement for primary mass inventory more than 92%. And RELAP5/Mod3.1 have a good mass flow rate prediction capability for the transient such as S-NC-4 except some flow oscillations. The reflux flow rate for S-NC-4 test is under predicted, and the overall results verify that the correct prediction of the reduced liquid level appears to be required for the correct calculation of the overall phenomena.

  • PDF

Dynamic Model of a Vertical Tube Absorber for Ammonia/water Absorption Refrigerators (암모니아/물 흡수식 냉동기의 수직원관형 흡수기의 동적 모델)

  • 문현석;정은수;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.844-853
    • /
    • 2002
  • A dynamic model which simulates the coupled heat and mass transfer within a vertical tube absorber was developed. The liquid film is a binary mixture of two components, and both of these components are present in the vapor phase. The pressure, concentration, temperature and mass flow rate of the vapor are obtained by assuming that the pressure is uniform within an absorber. The model was applied to an absorber for an ammonia/water absorption refrigerator. The transient behaviors of the pressure, the outlet temperature and the concentration of the solution and the cooling water outlet temperature on a step change at the absorber inlet of the cooling water temperature, the vapor mass flow rate and the concentration of the solution were shown.

Heat and Mass Transfer Enhancement of a pendant droplet on heated horizontal surface by acoustic resonance (가열된 평판위에 매달려 있는 액적의 음향공진에 의한 열 및 물질 전달 촉진에 관한 연구)

  • Moon, Jong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • Nonlinear and forced oscillations of supported viscous droplet were focused in the present study. The droplet has a free contact line with solid plate and inviscid fluid. Natural frequencies of a pendant droplet have been investigated experimentally by imposing the acoustic wave while the frequency is being increased at a fixed amplitude. The evaporation was observed at atmosphere pressure. The droplet was recorded throughout the entire evaporation process and transient variations of the volume was measured. The evaporation process of oscillating droplet with thermofoil has been also observed to investigate analyzing the resonance effect on the thermal characteristics of droplet. It is found that a pendant droplet shows the resonant behaviors at each mode similar to the theoretical analysis. During imposing the acoustic wave, the pendant droplet makes a rotating motion in its longitudinal axis which is a new shape oscillation mode. The evaporation rate of a pendant droplet at resonant frequency is significantly enhanced.

  • PDF

Numerical Simulation of a Forest Fire Spread (산불 전파의 수치 시뮬레이션)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • In the present study, a forest fire spread was simulated with a three-dimensional, fully-transient, physics-based, computer simulation program. Physics-based fire simulation is based on the governing equations of fluid dynamics, combustion and heat transfer. The focus of the present study is to perform parametric study to simulate fire spread through flat and inclined wildland with vegetative fuels like trees or grass. The fire simulation was performed in the range of the wind speeds and degrees of inclination. From the results, the effect of the various parameters of the forest fire on the fire spread behavior was analyzed for the future use of the simulation in the prediction of fire behavior in the complex terrain.