• Title/Summary/Keyword: transient heat transfer

Search Result 431, Processing Time 0.025 seconds

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

The Effect of Impact Velocity on Droplet-wall Collision Heat Transfer Above the Leidenfrost Point Temperature (Leidenfrost 지점 온도 이상에서 액적-벽면 충돌 열전달에 대한 충돌 속도의 영향)

  • Park, Jun-seok;Kim, Hyungdae;Bae, Sung-won;Kim, Kyung Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.567-578
    • /
    • 2015
  • Single droplet-wall collision heat transfer characteristics on a heated plate above Leidenfrost temperature were experimentally investigated considering the effects of impact velocity. The collision characteristics of the droplet impinged on the heated wall and the changes in temperature distribution were simultaneously measured using synchronized high-speed video and infrared cameras. The surface heat flux distribution was obtained by solving the three-dimensional transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition for the collision surface. As the normal impact velocity increased, heat transfer effectiveness increased because of an increase in the maximum spreading diameter and a decrease in the vapor film thickness between the droplet and heated wall. For We < 30, droplets stably rebounded from a heated wall without breakup. However, the droplets broke up into small droplets for We > 30. The tendency of the heat transfer to increase with increasing impact velocity was degraded by the transition from the rebounding region to the breakup region; this was resulted from the reduction in the effective heat transfer area enlargement due to the breakup phenomenon.

Experimental assessment of thermal radiation effects on containment atmospheres with varying steam content

  • R. Kapulla;S. Paranjape;U. Doll;E. Kirkby;D. Paladino
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4348-4358
    • /
    • 2022
  • The thermal-hydraulics phenomena in a containment during an accident will necessarily include radiative heat transfer (i) within the gas mixture due to the high radiative absorption and emission of steam and (ii) between the gas mixture and the surrounding structures. The analysis of some previous PANDA experiments (PSI, Switzerland) demonstrated the importance of the proper modelling of radiation for the benefit of numerical simulations. These results together with dedicated scoping calculations conducted for the present experiments indicated that the radiative heat transfer is considerable, even for a very low amount of steam (≈2%). The H2P2 series conducted in the large-scale PANDA facility at the Paul-Scherrer-Institut (PSI) in the framework of the OECD/NEA HYMERES-2 project is intended to enhance the understanding of thermal radiation phenomena and to provide a benchmark for corresponding numerical simulations. Thus, the test matrix was tailored around the two opposite extremes: either gas compositions with small steam content such that radiative heat transfer phenomena can be neglected. Or gas mixtures containing larger amounts of steam, so that radiative heat transfer is expected to play a dominant role. The H2P2 series consists of 5 experiments designed to isolate the radiation phenomena from convective and diffusive effects as much as possible. One vessel with a diameter of 4 m and a height of 8 m was preconditioned with different mixtures of air / steam at room and elevated temperatures. This was followed by the build-up of a stable helium stratification at constant pressure in the upper part of the vessel. After that, helium was injected from the top into the vessel which leads to an increase of the vessel pressure and a corresponding elevation-dependent and transient rise of the gas temperature. It is shown that even the addition of small amounts of steam in the initial gas atmosphere considerably impacts the radiative heat transport throughout all phases of the experiments and markedly influences i) the monitored gas peak temperature, ii) the temperature history during the compression and iii) the following relaxation phase after the compression was stopped. These PANDA experiments are the first of its kind conducted in a large scale thermal-hydraulic facility.

A Study on the Boil-Off Rate Prediction of LNG Cargo Containment Filled with Insulation Powders (단열 파우더를 채용한 LNGCC의 BOR예측에 관한 연구)

  • Han, Ki-Chul;Hwang, Soon-Wook;Cho, Jin-Rae;Kim, Joon-Soo;Yoon, Jong-Won;Lim, O-Kaung;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2011
  • A BOR(Boil-Off Rate) prediction model for the NO96 membrane-type LNG insulation containment filled with superlite powders during laden voyage is presented in this paper. Finite element model for the unsteady-state heat transfer analysis is constructed by considering the air and water conditions and by employing the homogenization method to simplify the complex insulation material composition. BOR is evaluated in terms of the total amount of heat invaded into LNGCC and its variation to the major variables is investigated by the parametric heat transfer analysis. Based upon the parametric results, a BOR prediction model which is in function of the LNG tank size, the insulation layer thickness and the powder thermal conductivity is derived. Through the verification experiment, the accuracy of the derived prediction model is justified such that the maximum relative difference is less than 1% when compared with the direct numerical estimation using the FEM analysis.

ANALYSES OF FLUID FLOW AND HEAT TRANSFER INSIDE CALANDRIA VESSEL OF CANDU-6 REACTOR USING CFD

  • YU SEON-OH;KIM MANWOONG;KIM HHO-JUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-586
    • /
    • 2005
  • In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with coincident loss of emergency core cooling (LOECC), as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

Thermoelastic analysis for a slab made of a thermal diode-like material

  • Darwish, Feras H.;Al-Nimr, Mohammad A.;Hatamleh, Mohammad I.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.645-659
    • /
    • 2015
  • This research investigates the thermoelastic transient behavior of a thermally loaded slab made of a thermal diode-like material which has two directional thermal conductivity values (low and high). Finite difference analysis is used to obtain the elastic response of the slab based on the temperature solutions. It is found that the rate of heat transfer through the thickness of the slab decreases with reducing the ratio between the low and high thermal conductivity values (R). In addition, reducing R makes the slab less responsive to the thermal load when heated from the direction associated with the low thermal conductivity value.

A Study on Transient Numerical Simulation on Heat Transfer Characteristics in the Resistive SFCL

  • Kim Chul-Ho;Lee Kee-Man;Ryu Kyung-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.14-19
    • /
    • 2005
  • A transient numerical simulation was conducted to have variation of temperature on an element of resistive Superconducting Fault Current Limiter (SFCL) under quench condition. It is very important engineering information for an optimum design of cryogenic system for cooling of a resistive SFCL element. A bifilar coil for resistive SFCL for 10 MVA system was incorporated as a model in this numerical study. From the numerical simulation result, it was found that the averaged temperature on the shunt and Bi-2212 element at 500 kW, 100 ms was 711.1 K and 198.4 K respectively. The temperature variation with the change of the hot-spot size and time is also obtained. The maximum temperature was continuously increased in all cases until the hot-spot stops at 100ms and it was going down after then. Such as, the details of temperature distribution on the SFCL element obtained from this numerical study and it should be very valuable information on the decision of the cooling capacity of cryogenic system.

An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem (비점성 평면 정체 유동 응고 문제에 대한 점근적 해석)

  • Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

Effect of Space Velocity on the DeNOx Performance in Diesel SCR After-Treatment System (디젤 SCR 후처리장치 내 공간속도가 NOx 저감에 미치는 영향)

  • Wang, Tae-Joong;Baek, Seung-Wook;Kang, Dae-Hwan;Kil, Jung-Ki;Yeo, Gwon-Koo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.49-54
    • /
    • 2006
  • The present study conducted a numerical modeling on the diesel SCR (selective catalytic reduction) system using ammonia as a reductant over vanadium-based catalysts $(V_2O_5-WO_3/TiO_2)$. Transient modeling for ammonia adsorption/desorption on the catalyst surface was firstly carried out, and then the SCR reaction was modeled considering for it. In the current catalytic reaction model, we extended the pure chemical kinetic model based on laboratory-scale powdered-phase catalyst experiments to the chemico-physical one applicable to realistic commercial SCR reactors. To simulate multi-dimensional heat and mass transfer phenomena, the SCR reactor was modeled in two dimensional, axisymmetric domain using porous medium approach. Also, since diesel engines operate in transient mode, the present study employed an unsteady model. In addition, throughout simulations using the developed code, effects of space velocity on the DeNOx performance were investigated.

  • PDF