• 제목/요약/키워드: transient dynamic

검색결과 1,025건 처리시간 0.024초

회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석 (Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes)

  • 김현정;오세원;김성준;최익현;김태욱;이상욱;김진원;이정진;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석 (Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes)

  • 김현정;김동현;오세원;김성준;최익현;김태욱;이상욱;김진원;이정진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

상판 위 질량의 순간적인 움직임에 의해 가진되는 6-자유도 공압제진대의 진동 응답에 대한 연구 (A Study on Response Analysis of 6-DOF Pneumatic Vibration Isolation Table Loaded by Transient Movements of Carriage on It)

  • 선종오;신윤호;김광준
    • 한국소음진동공학회논문집
    • /
    • 제17권6호
    • /
    • pp.515-523
    • /
    • 2007
  • As environmental vibration requirements on precision equipments get more stringent, use of pneumatic vibration isolators becomes more crucial and, hence, their dynamic performance needs to be further improved. Dynamic behavior of those pneumatic vibration Isolation tables is very important to both manufacturer and customer as performance specifications. Together with conventional transmissibility, transient response characteristics are another critical performance index especially when movements of components, e.g., x-y tables, of the precision equipments are very dynamic. In this paper, analysis on transient response of a pneumatic vibration isolation table loaded by a mass moving on it is presented. This is a conventional dynamics problem on a rigid body with 6 degree of freedom and a mass with another degree of freedom. How to obtain transient responses of the isolation table is described when the movements of the mass are prescribed relative to the table.

준 경험적 방법을 이용한 충격성 진동에 대한 구조물의 동적 응답의 예측 (The dynamic response prediction of the structure by transient vibration using Semi-Empirical Method)

  • 이홍기;백재호;김강부;원영재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1945-1950
    • /
    • 2000
  • When one build a building that posses Precison production process to be sensitive to vibration and SMD to procuce a large dynamic force, how do one predict & answer vibration control problem at building structure design at first stage, That is a question. It has tried to predict dynamic response and establish answering about global or local dynamic problem in building using experimental and analysis method. One of such a try, it be proposed Semi-Empirial Method that reduce error element of input information about dynamic analysis using dynamic experimental study and measurement data in the basis of real-structure. In this paper, the dynamic response problem about RC-structure building that will be set-up SMD produce large transient dynamic force using Semi-Empirical Method.

  • PDF

On the measurement of the transient dynamics of the nanocomposites reinforced concrete systems as the main part of bridge construction

  • Shuzhen Chen;Hou Chang-ze;Gongxing Yan;M. Atif
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.417-428
    • /
    • 2024
  • Nanocomposite-reinforced concrete systems have gained increasing attention in bridge construction due to their enhanced mechanical properties and durability. Understanding the transient dynamics of these advanced materials is crucial for ensuring the structural integrity and performance of bridge infrastructure under dynamic loading conditions. This paper presents a comprehensive study of the measurement techniques employed for assessing the transient dynamics of nanocompositereinforced concrete systems in bridge construction applications. A numerical method, including modal analysis are discussed in detail, highlighting their advantages, limitations, and applications. Additionally, recent advancements in sensor technologies, data acquisition systems, and signal processing techniques for capturing and analyzing transient responses are explored. The paper also addresses challenges and opportunities in the measurement of transient dynamics, such as the characterization of nanocomposite-reinforced concrete materials, the development of accurate numerical models, and the integration of advanced sensing technologies into bridge monitoring systems. Through a critical review of existing literature and case studies, this paper aims to provide insights into best practices and future directions for the measurement of transient dynamics in nanocompositereinforced concrete systems, ultimately contributing to the design, construction, and maintenance of resilient and sustainable bridge infrastructure.

Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향 (The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy)

  • 이상용;이정환
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

안정도 지수와 에너지 마진을 이용한 불안정 발전기의 clustering 법 (A Novel Method for Clustering Critical Generator by using Stability Indices and Energy Margin)

  • 장동환;정연재;전영환;남해곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권9호
    • /
    • pp.441-448
    • /
    • 2005
  • On-line dynamic security assessment is becoming more and more important for the stable operation of power systems as load level increases. The necessity is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices. Case study shows very promising results.

자동변속기의 변속과도특성 해석 (Shift-transient characteristics of an automatic transmission)

  • 장효환;전윤식
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.654-662
    • /
    • 1998
  • Shift quality of an automatic transmission in a vehicle is mainly affected by transient pressures in the hydraulic system during shifting. In this study, dynamic modelings of the hydraulic system and the power train of an automatic transmission are made systematically by a bond-graph method. The dynamic characteristics of the line pressures and clutch/brake pressures during shiftings are investigated by simulations and verified by experiments. The effects of clutch/brake pressures on the shift torque are also investigated through driving simulation.

강체 운동을 고려한 충격을 받는 외팔 보의 동적 해석 (Dynamic Analysis of a Cantilever Beam Undertaking Impulsive Force That Undergoes Rigid Body Motion)

  • 임홍석;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.890-895
    • /
    • 2005
  • This paper presents the dynamic analysis of a cantilever beam undertaking impulsive force that undergoes rigid body motion. The transient response of the beam induced by the impulsive force and the rigid body motion is calculated based on hybrid deformation variable modeling method by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rigid body motion is considered in this modeling. The effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical studies.

  • PDF

Transient Response of Head Slider with the Head Geometry Change in Magnetic Storage Devices

  • Mongkolwongrojn, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.906-909
    • /
    • 2005
  • In this study, the dynamic flying characteristics of the worn head sliders are investigated theoretically due to the change in head geometry caused by head and disk contact. The film shapes can be approximated as taper- truncated cycloidal-flat film. Two-dimensional time dependent modified Reynolds equation included molecular slip effect are formulated with neglected the roughness effect. The motion of head slider was assumed to have two degree of freedom in this work. Finite difference approximation with Newton Raphson iterative technique and the fourth order Runge-Kutta method were implemented to obtain the transient response of the slider head with various change in head geometry numerically and compared with the transient response of the IBM3380 type head slider. The simulation results show the film shape has affects significantly on the static and dynamic characteristic of slider head in magnetic storage systems.

  • PDF