• Title/Summary/Keyword: transglutaminase

Search Result 158, Processing Time 0.034 seconds

Physicochemical and Rheological Evaluation of Rice-Whole Soybean Curds Prepared by Microbial Transglutaminase (미생물 Transglutaminase를 이용하여 제조된 쌀 혼합 전두부의 이화학적 및 물성 평가)

  • Jin, Ik-Hun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.738-746
    • /
    • 2011
  • We manufactured rice-whole soybean curd by a microbial transglutaminase (MTGase) with a mixture of hydrolyzed rice and micronized whole soybean powder (MWSP) and analyzed its rheological properties, including texture, viscoelasticity, protein cross-linking, and surface structure. A 40% rice suspension digested with a Termamyl enzyme at $85^{\circ}C$ for 20 min showed a 9.0% reducing sugar and a consistency of $1.27\;Pa{\cdot}s^n$, resulting in a great reduction in consistency. A MWSP suspension with 22% solid content was transformed into a typical tofu texture. MWSP curd fortified with 7.5% rice showed enhanced texture properties, with a hardness of 639.6 dyne/$cm^2$, and a springiness of 0.96. In a MWSP suspension (18~22% w/v) treated with 5% MTGase, viscoelasticity increased dependently with MWSP concentration, and a 22% MWSP indicated a G' value of 5.1 Pa and a G'' value of 9.0 Pa. Furthermore, soybean proteins present in the 22% MWSP curd largely disappeared or formed polymers with a high molecular weight by MTGase reaction within 30 min. MWSP (22%) fortified with 7.5% rice showed similar polymerization patterns on SDS-PAGE. The surface structure of the rice-MWSP curds was more dense and homogeneous network due to the addition of hydrolyzed rice. However, the surface structure of all rice-MWSP curds became rough and showed a non-homogeneous network after cold storage.

Comparison of Pork Patty Quality Characteristics with Various Binding Agents (결착제 첨가 종류에 따른 돈육 패티의 품질 특성 비교)

  • Choi, Yun-Sang;Jeon, Ki-Hong;Park, Jong-Dae;Sung, Jung-Min;Seo, Dong-Ho;Ku, Su-Kyung;Oh, Nam-Su;Kim, Young-Boong
    • Korean journal of food and cookery science
    • /
    • v.31 no.5
    • /
    • pp.588-595
    • /
    • 2015
  • The objective of this study is to investigate the effects of binding agents (carrageenan, transglutaminase, isolated soy protein, and wheat fiber) on the physicochemical and sensory characteristics of pork patties. One percent of each pork patty formulation was prepared with one of the following carrageenan, transglutaminase, isolated soy protein, or wheat fiber. The lightness and redness values of raw and cooked pork patties with carrageenan, isolated soy protein, and wheat fiber were significantly higher than the control (p<0.05). The water holding capacity, cooking yield, and moisture content of pork patties containing carrageenan, isolated soy protein, and wheat fiber were significantly higher than the control (p<0.05). However, the reduction in diameter and thickness was lower than the control (p<0.05). The protein and fat content of the pork patties were not significantly different between the control and patties with binding agent addition. The shear forces of the pork patties with transglutaminase, isolated soy protein, and wheat fiber were significantly higher than the control (p<0.05), while the pork patties with carrageenan were significantly lower than control (p<0.05). Among the sensory characteristics, tenderness, juiciness, and overall acceptability of pork patties containing carrageenan, transglutaminase, isolated soy protein, and wheat fiber were slightly higher, although there was no significant difference. Therefore, pork patties containing binding agents are useful in making new ground meat products with desirable quality characteristics.

Evaluation of Textural Properties of Low-salt Pork Shoulder Comminuted Meats with Transglutaminase under Phosphate Combinations (인산염 조합에 따른 Transglutaminase를 첨가한 저염 돈육 목심 세절육의 물성 증진 효과)

  • Kim, Hyeong-Sang;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.298-304
    • /
    • 2010
  • This study was performed to evaluate functional and textural properties of low-salt pork meat products treated with transglutaminase (TG) using sodium polyphosphate (STPP) and sodium pyrophosphate (SPP). In experiment 1, lightness and yellowness decreased (p>0.05), but moisture content and cooking yield (%) increased with increased salt level (p<0.05). Based on these results, at least 1.0% salt was required to manufacture comminuted pork meat without quality defects. The effect of STPP and SPP with TG in low-salt (1%) pork comminuted shoulder meat products was evaluated in experiment 2. pH values increased with the addition of phosphate (p<0.05), with pH values in treatments containing TG and PP alone or in combination being higher than those with STPP alone (p<0.05). Cooking yield of treatments with TG and phosphates was higher than those without phosphates, but lower than CTL (1.5% salt and 0.4% STPP; p<0.05). Springiness of pork comminuted meat containing SPP was higher than those of CTL (p<0.05). These results indicate that low-salt meat products can be produced by the combination of TG and phosphate either alone or in combination to maintain cooking yield and textural properties.

Effect of Transglutaminase, Acorn, and Mungbean Powder on Quality Characteristics of Low-fat/salt Pork Model Sausages (Transglutaminase와 도토리 및 녹두 가루 첨가가 저지방/저염 돈육 모델소시지의 품질에 미치는 영향)

  • Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.374-381
    • /
    • 2009
  • Low-fat pork sausages (LFPS) were prepared with 1% transglutaminase (TG) and 0.5% sodium caseinate (SC), and with or without different type of hydrocolloids (0.3%; acorn, AC or mungbean, MB) to evaluate the effects of these ingredients on the physicochemical and textural properties of LFPS with reduced salt. pH, moisture content (%) and lightness of low-fat/salt pork sausages (LFSPS) were affected by the addition of TG combined with SC (TG-SC) and acorn or mungbean powders affected the lightness and yellowness of LFSPS. However, cooking yield of LFSPS decreased, while textural properties were increased with the addition of TG-SC combination, which did not affect expressible moisture contents (%) of LFSPS. Both AC and MB tended to improve the cooking yield and water holding capacity of LFSPS, especially, MB rather than AC. However, these had no effect on the textural properties of LFSPS, except for textural chewiness. These results indicated that AC and MB powders could be used as a water binding agent in TG-SC combination of LFSPS.

Streptoverticillum morbarense로부터 생산되는 Transglutaminase 분리 및 식품에의 적용

  • Yu, Jae-Su;Sin, Won-Seon;Eom, Tae-Bung;Kim, Yeong-Su;Jeong, Yong-Seop
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.500-503
    • /
    • 2002
  • In order to improve the physical properties of food such as texture and food self-life. Transglutaminase(mTG) from Streptoverticillum morbarense was prepared. In the preliminary experiments, presence of proteases in the crude enzyme did not improve the texture of dough, which mean the inteference of mTG reaction by the proteases. Among the cation exchange resins tested for the removal of proteases, Monoplus S 100(Bayer, Germany) was the most efficient resin with 20 fold increase in the mTG/protease activity ratio. By further purification steps with a quaternary ammonia salt resin and a gel permeation chromatography, proteases were effectively removed from the preparation. Therefore, the improvement of flour texture was shown by adding the protease-free mTG.

  • PDF

Investigation of Transglutaminase-Induced Peptide Cross-Linking by Matrix-Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry

  • 김희준;임효섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1299-1302
    • /
    • 1999
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was used to demonstrate cross-linking of peptides induced by transglutaminase. The presence of ε-( Υ-glutamyl)lysine isopeptide cross-link in the acid hydrolysate of the cross-linking reaction mixture was also demonstrated by MALDI-TOF-MS without prior separation. MALDI-TOF-MS quickly provided peptide mass maps after pronase digestion of the cross-linked peptide adduct, which enabled us to monitor the hydrolytic sequence. Pronase appears to preferentially hydrolyze peptide bonds distant from the cross-link before hydrolyzing peptide bonds around the cross-link. The results suggest that pronase digestion followed by MALDI-TOF-MS could be used for determination of amino acid sequence around a modification site.