• Title/Summary/Keyword: transgenic crop

Search Result 256, Processing Time 0.037 seconds

Efficient Agrobacterium-Mediated Transformation of Alfalfa Using Secondary Somatic Embryogenic Callus (알팔파의 이차 캘러스를 이용한 Agrobacterium에 의한 효율적인 형질 전환)

  • 이병현;원성혜;이효신;김기용;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • An efficient method for Agrobacterium-mediated transformation of forage crop alfalfa (Medicago sativa L.) was established using secondary somatic embryogenic calli. Agrobacterium tumefaciens strain EHAlOl and a binary vector pIG121-Hm which has selection markers for kanamycin and hygromycin have been shown to be an efticient materials for alfalfa transformation. The secondary somatic embryogenic calli originated from hypocotyl explants of alfalfa were efficient infection materials for Agrobacterium EHAlOl and normally germinated into plantlets. The introduced gene (GUS) was constitutively expressed in all tissues of transgenic alfalfa with different expression levels. These results indicate that the use of pIG121-Hm vector, Agrobacterium EHAlOl and improved culture system of callus facilitate the transformation of alfalfa. (Key words : Agrobacterium, Alfalfa, Gene transfer, Transformation)

  • PDF

Potential Benefit of Genetic Engineering in Plant Breeding: Rice, a Case Study

  • Datta, Swapan K.
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.197-206
    • /
    • 2000
  • This paper summarizes recent developments in the field of molecular biology and its application to plant breeding, particularly in rice. Plant breeding in the past mostly depended on the time-consuming crossing of known genomes limited to certain traits. Plant breeding has now benefited from marker-assisted selection and genetic engineering to widen the gene pool, improve plant protection, and increase yield. Future plant breeding will expand based on functional and nutritional genomics, in which gene discovery and high-throughput transformation will accelerate crop design and benefits will accrue to human health, in the form of nutritional food for poor people to reduce malnutrition, or food enriched with antioxidants and with high food value for rich people. Agricultural biotechnology for food is no longer a dream but a reality that will dominate the 21st century for agriculture and human welfare.

  • PDF

QTL mapping of low-temperature germinability and identification of qLTG1 candidate genes in rice

  • Kim, Sun Ha;Shim, Kyu-Chan;Lee, Hyun-Sook;Le, Anh Quynh;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.116-116
    • /
    • 2017
  • Low-temperature is one of the environmental stress factors that affect plant growth and development and consequently limit crop productivity. The control of seed germination under low-temperature is organized by many genes which are called quantitative trait loci (QTLs). High germination rate for low-temperature is an important factor of growing rice. Previously, we identified a major QTL controlling low-temperature germinability in rice using 96 introgression lines (ILs) derived from a cross between Oryza rufipogon (Rufi) and the Korean japonica cultivar, 'Hwaseongbyeo (HS)'. A $BC_3F_7$ line (TR5) showed better low-temperature germinability than its recurrent parent. TR5 was crossed with HS to develop a segregating F2:3 populations for the target QTL. Six SSR markers polymorphic between HS and Rufi were used to screen and fine map the qLTG1. The qLTG1 on chromosome 1, which accounted for 55.5% of the total phenotypic variation, confirmed that Rufi allele enhanced the low-temperature germinability. Intervals between markers CRM16 and CRM15, four candidate genes were identified. The identified candidate genes, which are encoded by a protein of unknown function, showed their direct involvement on seed germination at low-temperature. To identify genes targeted by qLTG1, we investigated the expression profiles of these candidate genes and germination behavior of qLTG1 under different stress conditions and compared to HS, Rufi, and TR5 at $13{\pm}2^{\circ}C$ for 3 days after incubation. Furthermore, transgenic rice plants will also be developed to conduct a detailed investigation on low-temperature germinability. Hence, the QTL for low-temperature germinability would be useful in rice breeding programs especially in the development of lines possessing low-temperature germinability.

  • PDF

Molecular characterization of lepidopteran pest-resistant transgenic rice events expressing synthetic Cry1Ac

  • Lee, Kyeong-Ryeol;Shin, Kong Sik;Suh, Seok Cheol;Kim, Ki Young;Jeon, Yong Hee;Park, Beom Seok;Kim, Ju-Kon;Kweon, Soon-Jong;Lee, Yeon-Hee
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.317-324
    • /
    • 2009
  • The insecticidal toxin gene of Bacillus thuringiensis (Bt) is one of the most commonly used in the development of genetically modified (GM) crops. In this research, we analyzed Bt rice showing lepidopteran pest-resistance. The Bt gene is a synthetic Cry1Ac composed of optimal codons for plants, and the Bt protein is targeted to the chloroplast by a transit peptide. Three Cry1Ac rice events (C103-3, C127-1, and C7-1) were analyzed for molecular characterization. C103-3 contains two copies of T-DNA where the left border (LB) region is truncated. Both C7-1 and C127-1 have a single copy of T-DNA, but a part of the vector backbone DNA is inserted into the genome of C127-1; thus, only C7-1 had intact T-DNA. Progenies of C7-1 crossed with the original cultivar, Nakdong, and double-haploid lines from anther culture of lines crossed with the elite cultivar, Dongjin, were analyzed for T-DNA flanking genomic DNA and genotyping. Results showed that an intact T-DNA region without the vector backbone was inserted into the genome and was stably inherited through generations. The C7-1 homozygous event could be used as breeding material to develop GM rice with pest resistance.

Tissue Culture of Stone Fruit Plants Basis for Their Genetic Engineering

  • Csanyi, Marta;Wittner, Anita;Nagy, Agenes;Balla, Ildiko;Vertessy, Judit;Palkovics, Laszlo;Balazs, Eevin
    • Journal of Plant Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 1999
  • Genetic engineering of stone fruit species like apricot, plum, peach and cherry are hampered by the inefficient and low-level regeneration processes in tissue culture. The first transgenic stone fruit species have emerged from transformed hypocotyls. These great achievements were applauded by the scientific community contrary the fact that hypocotyl derived transgenic plants have no real brooding value. Tissue culture of different organs of valuable cultivars are recorded with an extremely low-level of regeneration in the literature. To improve the tissue culture basis of stone fruit plants an extensive tissue culture programme were launched and dozens of different media were compared including a series of hormone concentration in the tissue culture systems. Our continuous efforts were crowned by a very efficient method for achieving up to 30-40% regenerable petioles. Usually on a single petiole several well-separated meristems were induced. After 3-4 weeks of cultivation shoots were developed. The basic media $K_2$ were supplemented with 10g/L saccharose, 10g/L glucose and 10g/L maltose. The following plant hormones were used BAP 1mg/L, TDZ 1mg/L, 2-iP 1mg/L and IAA 0,1 mg/L concentrations. The Petri dishes were kept for 3 weeks in dark at a temperature 22$^{\circ}C$ for 8 hours and 22-24$^{\circ}C$ for 16 hours. The Petri dishes were sealed with Parafilm. The regeneration of the petioles were genotype independent and we were able to regenerate different plum cultivars with almost the same efficiency.

  • PDF

Single-dose oral toxicity study of genetically modified silkworm expressing EGFP protein in ICR mouse

  • Jang, Kyung-Min;Kim, Sung-Gun;Park, Ji-Young;Choi, Won-Ho;Lee, Jae-Woo;Jegal, Hyeon-Young;Kweon, Soon-Jong;Choi, Kwang-Ho;Park, Jung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.109-115
    • /
    • 2016
  • Silk has had a reputation as a luxurious and sensuous fabric but it is not popular due to the expensive price and poor durability. To develop the silk materials that apply the various industries, the artificially synthesized gene can be introduced into the silkworm and expressed in the silk gland. Transgenic silkworms for the mass production of green fluorescent silks are generated using a fibroin H-chain expression system. For commercial use, safety assessment of the transgenic silkworms is essential. The purpose of this study was to examine the potential acute oral toxicity of EGFP protein expressed in genetically modified (GM) fluorescence silkworm and to obtain the approximative lethal dose in the male and female at 6-weeks ICR mice. EGFP protein was fed at a dose of 2,000 mg/kg body weight in five male or five female mice. Mortalities, clinical findings and body weight changes were monitored for 1, 3, 7, 14 days after dosing. At the end of 14 day observation period, all mice were sacrificed, and the postmortem necropsy were performed. The test group was not observed death case. Also the effect was not admitted by test substance administration in common symptoms, the body weight and postmortem. The results of single-dose oral toxicity test showed that approximative lethal dose of EGFP protein expressed in fluorescence silkworm was considered to exceed the 2,000 mg/kg body weight in both sexes.

Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Bae, Han-Hong;Kim, Joon-Ki;Lee, Cheol-Ho;Hong, Jin-Sung;Ju, Ho-Jong;Kim, Hong-Gi;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.315-323
    • /
    • 2011
  • Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by RNA silencing, which is accompanied by the accumulation of virus-derived small interfering RNAs (siRNAs). In this study, changes in the accumulation of BPMV siRNAs were investigated in soybean plants infected with BPMV alone, or infected with both BPMV and Soybean mosaic virus (SMV) and in transgenic soybean plants expressing SMV helper component-protease (HC-Pro). In many potyviruses, HC-Pro is a potent suppressor of RNA silencing. In plants infected with BPMV alone, accumulation of siRNAs was positively correlated with symptom severity and accumulation of BPMV genomic RNAs. Plants infected with both BPMV and SMV and BPMV-infected transgenic soybean plants expressing SMV HC-Pro exhibited severe symptoms characteristic of BPMVSMV synergism, and showed enhanced accumulation of BPMV RNAs and siRNAs compared to plants infected with BPMV alone and nontransgenic plants. Likewise, SMV HC-Pro enhanced the accumulation of siRNAs produced from a silenced green fluorescent protein gene in transient expression assays, while the P19 silencing suppressor of Tomato bushy stunt virus did not. Consistent with the modes of action of HC-Pro in other systems, which have shown that HC-Pro suppresses RNA silencing by preventing the unwinding of duplex siRNAs and inhibiting siRNA methylation, these studies showed that SMV HC-Pro interfered with the activities of RNA-induced silencing complexes, but not the activities of Dicer-like enzymes in antiviral defenses.

Development of transgenic potato with high content of sulphur-containing essential amino acids (황 함유 필수아미노산이 증대된 기능성 형질전환 감자 개발 현황)

  • Goo, Young-Min;Kim, Tae-Won;Lee, Min-Kyung;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Potato is the 4th important crop along with rice, wheat and maize. It contains high quality of starch with relatively high content of vitamin C and protein. However, there is a nutritionally limiting factor due to a low level of sulphur-containing essential amino acid including methionine and cysteine. Recently, recombinant DNA technology and metabolic engineering with genes involved in the bio-synthetic pathway have been applied to enhance the level of these essential amino acids. In this report, it has been discussed about the current status and bottleneck on the development of transgenic potato containing high level of sulphur-containing essential amino acids.