• 제목/요약/키워드: transgenic

검색결과 2,122건 처리시간 0.028초

Production of transgenic Alstroemeria plants containing virus resistance genes via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • 제47권2호
    • /
    • pp.164-171
    • /
    • 2020
  • Transgenic Alstroemeria plants resistant to Alstroemeria mosaic virus (AlMV) were generated through RNA-mediated resistance. To this end, the friable embryogenic callus (FEC) of Alstroemeria was induced from the leaf axil tissue and transformed with a DNA fragment containing the coat protein gene and 3'-nontranslated region of AlMV through an improved particle bombardment system. The bar gene was used as a selection marker. More than 300 independent transgenic FEC lines were obtained. Among these, 155 lines resistant to phosphinothricin (PPT) were selected under low stringent conditions. After increasing the stringency of PPT selection, 44 transgenic lines remained, and 710 somatic embryos from these lines germinated and developed into shoots. These transgenic shoots were then transferred to the greenhouse and challenged with AlMV. In total, 25 of the 44 lines showed some degree of resistance. PCR analysis confirmed the presence of the viral sequence. Virus resistance was observed at various levels. Establishment of an efficient transformation system for Alstroemeria will allow inserting transgenes into this plant to confer resistance to viral and fungal pathogens. Accordingly, this is the first report on the production of a transgenic virus-resistant Alstroemeria and lays the foundation for alternative management of viral diseases in this plant.

흰쥐 베타-카제인 유전자의 발현조절 부위를 이용하여 유선에서 사람 락토페린을 발현하는 형질전환 생쥐의 개발 (Expression of Human Lactoferrin in the Mammary Glands of Transgenic Mice using Regulatory Elements of Rat $\beta$-Casein Gene)

  • 김선정;이고운;배수경;조용연;한용만;이철상;이경광;유대열
    • 한국가축번식학회지
    • /
    • 제18권2호
    • /
    • pp.133-139
    • /
    • 1994
  • Two human lactoferrin expression vectors(pCChcLf and pCChcLf-1) were constructed using rat $\beta$-casein gene and human lactoferrin cDNA. The recombinant DNAs containing human lactoferrin cDNA were microinjected into the fertilized eggs of hybrid mice (BDF1 : C57BL$\times$DBA) and the DNA-injected eggs were treansferred into the oviducts of foster mothers. Genomic DNAs were isolated from the tails of mice born from the microinjected eggs and analyzed by Southern blot analysis. As a result, 5 and 9 transgenic mice with CChcLf and CChcLf-1 gene were produced, respectively. To determine tissue-specificity of transgene expression, Northern blot analysis was performed. Female transgenic mice were killed at day 10 of lactation and total RNAs from various tissues were isolated. Based on Northern blot analysis, it was shown that transgene was mainly expressed in the mammary glands of transgenic mice. In addition, the human lactoferrin in milk was detected by enzyme-linked immunosorbent assay. For this study, milk was obtained from the mammary glands of the transgenic mice at day 10 of lactation. In line #2 of CChcLf and line #7 of CChcLf-1 transgenic mice, human lactoferrin was secreted into the milk at concentration levels of 340ng/ml and 60ng/ml, respectively.

  • PDF

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • 한국초지조사료학회지
    • /
    • 제20권2호
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

Investigation of Possible Horizontal Gene Transfer from Transgenic Rice to Soil Microorganisms in Paddy Rice Field

  • Kim, Sung-Eun;Moon, Jae-Sun;Kim, Jung-Kyu;Choi, Won-Sik;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.187-192
    • /
    • 2010
  • In order to monitor the possibility of horizontal gene transfer between transgenic rice and microorganisms in a paddy rice field, the gene flow from a bifunctional fusion (TPSP) rice containing trehalose-6-phosphate synthase and phosphatase to microorganisms in soils was investigated. The soil samples collected from the paddy rice field during June 2004 to March 2006 were investigated by multiplex PCR, Southern hybridization, and amplified fragment length polymorphism (AFLP). The TPSP gene from soil genomic DNAs was not detected by PCR. Soil genomic DNAs did not show homologies on the Southern blotting data, indicating that gene transfer did not occur during the last two years in the paddy rice field. In addition, the AFLP band patterns produced by soil genomic DNAs from both transgenic and non-transgenic rice fields appeared similar to each other when analyzed by the NTSYSpc program. Thus, these data suggest that transgenic rice does not give a significant impact on the communities of soil microorganisms, although long-term observation may be needed.

Expression of Catalase (CAT) and Ascorbate Peroxidase (APX) in MuSI Transgenic Tobacco under Cadmium Stress

  • Kim, Kye-Hoon;Kim, Young-Nam;Lim, Ga-Hee;Lee, Mi-Na;Jung, Yoon-Hwa
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.53-57
    • /
    • 2011
  • The MuSI is known as a multiple stress resistant gene with several lines. A previous study using RT-PCR showed that the expression of MuSI gene in tobacco plant induced its tolerance to Cd stress. This study was conducted to examine the enhanced Cd tolerance of the MuSI transgenic tobacco plant through germination test and to understand the role of the involved antioxidant enzymes for the exhibited tolerance. Germination rate of MuSI transgenic tobacco was more than 10% higher than that of wild-type tobacco, and seedlings of MuSI transgenic tobacco grew up to 1.6 times larger and greener than seedlings of wild-type tobacco at 200 and 300 ${\mu}M$ Cd. From the third to the fifth day, CAT activities at 100 and 200 ${\mu}M$ Cd and APX activities at 100, 200 and 300 ${\mu}M$ Cd of MuSI transgenic tobacco were up to two times higher than those of wild-type tobacco. MuSI gene is shown to enhance the activities of antioxidant enzymes resulting in higher tolerance to oxidative stress compared with the control plant.

Transcriptional activation of anthocyanin structural genes in torenia cv. Kauai rose by overexpression of anthocyanin regulatory transcription factors

  • Xu, Jun-Ping;Naing, Aung Htay;Kim, Chang-Kil
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.33-33
    • /
    • 2018
  • This study was conducted to examine the role of the transcription factors (TFs) (RsMYB1 and mPAP1+B-Peru) in the regulation of anthocyanin biosynthesis in the ornamental torenia cv. Kauai rose. In this study, we could produce several putative transgenic lines overexpressing the TFs via Agrobacterium-mediated transformation, and presence of the TFs in the randomly selected five transgenic lines was confirmed using polymerase chain reaction (PCR). According to results of reverse transcription-PCR analysis (RT-PCR), the expression of the TFs in all transgenic lines and of the anthocyanin structural genes (CHS, F3H, DFR, and ANS) in all transgenic lines and WT plants were distinctly detectable. However, transcript levels of the structural genes expressed in the transgenic lines overexpressing TFs were significantly higher than those expressed in WT plants. Therefore, it is suggested that anthocyanin content in flowers of the transgenic torenia would be significantly higher than that in flowers of WT plants. Moreover, these results indicate that the TFs (RsMYB1 and mPAP1+B-Peru) could be exploited as potential anthocyanin regulatory TFs to enhance anthocyanin content in the other horticultural plants.

  • PDF

A Possible Role of Trehalose as a Regulatory Molecule in Plant Drought Resistance

  • Hwang, Eul-Won;Cho, Soo-Muk;Kwon, Hawk-Bin
    • 한국환경농학회지
    • /
    • 제23권3호
    • /
    • pp.123-127
    • /
    • 2004
  • In many organisms, trehalose has been Down as an energy source and a protectant against various environmental stresses such as desiccation, freezing, heat and osmotic pressure. Previously, we have isolated and characterized the genes encoding trehalose-6-phosphate synthase (ZrTPS1) and trehalose-6-phosphate phosphatase (ZrTPS2) from one of the most osmotolerant yeasts, Zygosaccharomyces rouxii. We have also generated transgenic plants by co-introduction of ZrTPS2 and ZrTPS2 into potato plant (ZrTPS2-2A-ZrTPS1 plant) in an attempt to metabolically engineer trehalose in the transgenic plant using the foot-and-mouth disease virus(FMDV) 2A system and to generate drought resistant crop plants. In this research, we assayed previously generated the ZrTPS2-2A-ZrTPS1 plant biofunctionally by drought treatment, and measured the amount of trehalose in the ZrTPS2-2A-ZrTPS1 transgenic plants. The ZrTPS2-2A-ZrTPS1 transgenic plant showed strong drought resistance in spite of little or no accumulation of transgenic in he transgenic plant compared with control plant.

Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants

  • Li, Xue;Cheng, Xiaoxia;Liu, Jun;Zeng, Huiming;Han, Liebao;Tang, Wei
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.61-69
    • /
    • 2011
  • The dehydration-responsive element binding proteins (DREB1)/C-repeat (CRT) binding factors (CBF) function as transcription factors and play an important role in agricultural biotechnology and molecular biology studies of drought and freezing stress tolerance. We generated transgenic Lolium perenne plants containing the PCR-cloned Arabidopsis DREB1A/CBF3 gene (AtDREB1A/CBF3) to study the function of this gene construct in drought and freezing tolerance in a species of turfgrass. Compared to the control, AtDREB1A/CBF3 transgenic L. perenne plants showed enhanced drought and freezing stress tolerance. The activities of the enzymes superoxide dismutase (SOD) and peroxidase (POD) were higher in transgenic plants than in the non-transgenic plant control. These results demonstrate that the expression of the AtDREB1A/CBF3 gene in transgenic L. perenne plants enhanced drought and freezing tolerance and that the increased stress tolerance was associated with the increased activities of antioxidant enzymes. These results are relevant to stress biology and biotechnology studies of turfgrass.

Mitochondrial DNA Diversity of Korean Ogol Chicken

  • Lee, Y.J.;Bhuiyan, M.S.A.;Chung, H.J.;Jung, W.Y.;Choi, K.D.;Jang, B.G.;Paek, W.K.;Jeon, J.T.;Park, C.S.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.477-481
    • /
    • 2007
  • Korean Ogol chicken has been registered as a natural monument in Korea and regarded as a valuable genetic resource for the world. As an initial step to investigate the genetic structures of this breed, phylogenetic analysis and calculation of genetic diversities have been performed using mitochondrial DNA (mtDNA) sequence variations. A total of 31 Korean Ogol chicken was grouped into four haplotypes and the large haplotype was represented in 12 individuals. The unrooted neighbor-joining tree indicates that the Korean Ogol chicken shared three (A to C) major chicken lineages representing the high genetic variability of this breed. These results can be used for making the breeding and conservation strategies for the Korean Ogol chicken.

A Cyan Fluorescent Protein Gene (cfp)-Transgenic Marine Medaka Oryzias dancena with Potential Ornamental Applications

  • Vu, Nguyen Thanh;Cho, Young Sun;Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제17권4호
    • /
    • pp.479-486
    • /
    • 2014
  • To evaluate their potential utility as an ornamental organism, novel transgenic marine medaka Oryzias dancena strains with a highly vivid fluorescent phenotype were established through transgenesis of a cyan fluorescent protein gene (cfp) driven by the endogenous fast skeletal myosin light chain 2 gene (mlc2f) promoter. The transgenic marine medaka strains possessed multiple copies of transgene integrants and passed their fluorescent transgenes successfully to subsequent generations. Transgenic expression in skeletal muscles at both the mRNA and phenotypic levels was, overall, dependent upon transgene copy numbers. In the external phenotype, an authentic fluorescent color was dominant in the skeletal muscles of the transgenic fish and clearly visible to the unaided eye. The phenotypic fluorescent color presented differentially in response to different light-irradiation sources; the transgenics displayed a yellow-green color under normal daylight or white room light conditions, a strong green-glowing fluorescence under ultraviolet light, and a cyan-like fluorescence under blue light from a light-emitting diode.