• Title/Summary/Keyword: transforming gene

Search Result 179, Processing Time 0.037 seconds

Transforming Growth Factor-β3 Gene SfaN1 Polymorphism in Korean Nonsyndromic Cleft Lip and Palate Patients

  • Kim, Myung-Hee;Kim, Hyo-Jin;Choi, Je-Yong;Nahm, Dong-Seok
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.533-537
    • /
    • 2003
  • The nonsyndromic cleft lip and palate (NSCL/P) is a congenital deformity of multifactorial origin with a relatively high incidence in the oriental population. Various etiologic candidate genes have been reported with conflicting results, according to race and analysis methods. Recently, the ablation of the TGF-${\beta}3$ gene function induced cleft palates in experimental animals. Also, polymorphisms in the TGF-${\beta}3$ gene have been studied in different races; however, they have not been studied in Koreans. A novel A $\rightarrow$ G single nucleotide polymorphism (defined by the endonuclease SfaN1) was identified in intron 5 of TGF-${\beta}3$ (IVS5+104 A > G). It resulted in different genotypes, AA, AG, and GG. The objective of this study was to investigate the relationship between the SfaN1 polymorphism in TGF-${\beta}3$ and the risk of NSCL/P in the Korean population. The population of this study consisted of 28 NSCL/P patients and 41 healthy controls. The distribution of the SfaN1 genotypes was different between the cases and controls. The frequency of the G allele was significantly associated with the increased risk of NSCL/P [odds ratio (OR) = 15.92, 95% confidence interval (CI) = 6.3-41.0]. The risk for the disease increased as the G allele numbers increased (GA genotype: OR = 2.11, 95% CI = 0.38-11.68; GG genotype: OR = 110.2, 95% CI = 10.67 - 2783.29) in NSCL/P. A stratified study in patients revealed that the SfaN1 site IVS5+104A > G substitution was strongly associated with an increased risk of NSCL/P in males (p < 0.001), but not in females. In conclusion, the polymorphism of the SfaN1 site in TGF-${\beta}3$ was significantly different between the NSCL/P patients and the control. This may be a good screening marker for NSCL/P patients among Koreans.

Characterization and Expression Pattern of the Partial Myostatin cDNA in Shrimp, Fenneropenaeus chinensis

  • Lee, Sang Beum;Kim, Yong Soo;Yoon, Moongeun;Kim, Su-Kyoung;Jang, In Kwon;Lim, Hyun Jeong;Jin, Hyung-Joo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.224-229
    • /
    • 2007
  • Muscle tissue expresses many muscle-specific genes, including myostatin (also known as GDF8) that is a member of the transforming growth factor-beta superfamily. Myostatin (MSTN) negatively regulates mammalian skeletal muscle growth and development by inhibiting myoblast proliferation. Mice and cattle possessing mutant MSTN alleles display a 'double muscling' phenotype characterized by extreme skeletal muscle hypertrophy and/or hyperplasia. In this study, we first have characterized partial cDNA of a MSTN gene from the muscle tissue in the F. chinensis and examined its expression pattern in various tissues. The partial MSTN gene (GenBank accession number EU 131093) in the F. chinensis was 1134 bp, encoding for 377 amino acids that showed 63-93% amino acid similarity to other vertebrate MSTNs, containing a conserved proteolytic cleavage site (RXRR) and conserved cysteine residues in the C-terminus. Based on a RT-PCR, the MSTN gene was expressed in the all tissues of F. chinensis used in this study.

  • PDF

Overproduction of Sodium Gluconate Using the Recombinant Aspergillus niger (재조합 Aspergillus niger에 의한 글루콘산나트륨의 산업적 생산)

  • 이선희;이현철;김대혁;양문식;정봉우
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.214-219
    • /
    • 1998
  • Polymerase chain reaction(PCR) was conducted to obtain the gene encoding glucose oxidase(GOD) from Aspergillus niger(ATCC 2110) and the DNA sequence determined was coincided with published GOD sequence from A. niger. Recombinant transforming vector containing GOD and hygromycin B(hyg.B) resistant gene(hph) was constructed and used for further transformation of A. niger ATCC 2110. Selectivity of hyg.B against A. niger differed depending on which media were used i.e., nutrient-rich media such as potato dextrose agar(PDA) and complete medium(CM) showed only 50% growth inhibition at 400 $\mu$m ml$^-1$ of hyg.B while the minimal media inhibited mycelial growth completely at 200 $\mu$m ml$^-1$ of hyg.B. Twenty to sixty putative transformants were isolated from the hyg.B-containing minimal top agar, transferred successively onto alternating selective and nonselective media for a mitotic stability of hyg.B resistance and, then, single-spored. Among the stable transformants, the transformant(GOD1-6) grown by flask culture showed the considerable increase of extracellular GOD activity, which was estimated to the degree of 50% - 100% comparing to that of wild type. Transformation of tGOD1-6 was resulted from integration of the vectors into heterologous as well as homologous regions of the A. niger genome. Southern blot analysis revealed that there were two independent integrations of vector into fungal genome and one into the GOD gene due to homologous recombination. In addition, GOD activity and sodium gluconate production when tGOD1-6 was fed-batch fermented were enhanced 11 fold and 2.25 fold, respectively, compared to that of the wild type.

  • PDF

Early Growth Response Protein-1 Involves in Transforming Growth factor-β1 Induced Epithelial-Mesenchymal Transition and Inhibits Migration of Non-Small-Cell Lung Cancer Cells

  • Shan, Li-Na;Song, Yong-Gui;Su, Dan;Liu, Ya-Li;Shi, Xian-Bao;Lu, Si-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4137-4142
    • /
    • 2015
  • The zinc finger transcription factor EGR 1 has a role in controlling synaptic plasticity, wound repair, female reproductive capacity, inflammation, growth control, apoptosis and tumor progression. Recent studies mainly focused on its role in growth control and apoptosis, however, little is known about its role in epithelial-mesenchymal transition (EMT). Here, we aim to explore whether EGR 1 is involved in TGF-${\beta}1$-induced EMT in non-smallcell lung cancer cells. Transforming growth factor (TGF)-${\beta}1$ was utilized to induce EMT in this study. Western blotting, RT-PCR, and transwell chambers were used to identify phenotype changes. Western blotting was also used to observe changes of the expression of EGR 1. The lentivirus-mediated EGR 1 vector was used to increase EGR 1 expression. We investigated the change of migration to evaluate the effect of EGR 1 on non-small-cell lung cancer cells migration by transwell chambers. After stimulating with TGF-${\beta}1$, almost all A549 cells and Luca 1 cells (Non-small-cell lung cancer primary cells) changed to mesenchymal phenotype and acquired more migration capabilities. These cells also had lower EGR 1 protein expression. Overexpression of EGR 1 gene with EGR 1 vector could decrease tumor cell migration capabilities significantly after adding TGF-${\beta}1$. These data s howed an important role of EGR 1 in the EMT of non-small-cell lung cancer cells, as well as migration.

Stimulation of the Extracellular Matrix Production in Dermal Fibroblasts by Areca catechu Extract (진피섬유모세포에서 대복피추출물의 세포외기질 합성 촉진 효과)

  • Lee, Min-Ho;Kim, Hyung-Jin;Jung, Hyun-Ah;Lee, Young-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1857-1862
    • /
    • 2013
  • Dermal fibroblasts produce the many components of the extracellular matrix (ECM) that are needed to maintain connective tissue integrity and repair tissue injuries. This study investigated the effects of Areca catechu extract (ACE) on dermal fibroblast cell activation. Cultured human dermal fibroblasts were treated with ACE, and then ECM production was determined by ELISA, Western blot and RT-PCR. ACE significantly accelerated the production of type 1 collagen, fibronectin, and transforming growth factor (TGF)-${\beta}1$ by ELISA and type 1 collagen by Western blot assay. ACE also increased the gene expression of COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF) and insulin growth factor (IGF)-1. These results suggest that ACE has the potential to stimulate ECM production and that it might be suitable for maintaining skin texture.

Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells

  • Hua, Jianming;Shen, Ning;Wang, Jingkai;Tao, Yiqing;Li, Fangcai;Chen, Qixin;Zhou, Xiaopeng
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.661-671
    • /
    • 2019
  • Adipose tissue-derived mesenchymal stem cells (ADSCs) are promising for regenerating degenerated intervertebral discs (IVDs), but the low efficiency of nucleus pulposus (NP)-specific differentiation limits their clinical applications. The Sonic hedgehog (Shh) signaling pathway is important in NP-specific differentiation of ADSCs, and Smoothened Agonist (SAG) is a highly specific and effective agonist of Shh signaling. In this study, we proposed a new differentiation strategy with the use of the small molecule SAG. The NP-specific differentiation and extracellular matrix (ECM) synthesis of ADSCs were measured in vitro, and the regenerative effects of SAG pretreated ADSCs in degenerated IVDs were verified in vivo. The results showed that the combination of SAG and transforming growth factor-${\beta}3$ ($TGF-{\beta}3$) is able to increase the ECM synthesis of ADSCs. In addition, the gene and protein expression levels of NP-specific markers were increased by treatment with SAG and $TGF-{\beta}3$. Furthermore, SAG pretreated ADSCs can also improve the disc height, water content, ECM content, and structure of degenerated IVDs in vivo. Our new differentiation scheme has high efficiency in inducing NP-specific differentiation of ADSCs and is promising for stem cell-based treatment of degenerated IVDs.

TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes

  • Ongchai, Siriwan;Somnoo, Oraphan;Kongdang, Patiwat;Peansukmanee, Siriporn;Tangyuenyong, Siriwan
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.735-743
    • /
    • 2018
  • We investigated the effect of transforming growth factor beta 1 ($TGF-{\beta}1$) on equine hyaluronan synthase 2 (HAS2) gene expression and hyaluronan (HA) synthesis in culture models of articular chondrocytes. Equine chondrocytes were treated with $TGF-{\beta}1$ at different concentrations and times in monolayer cultures. In three-dimensional cultures, chondrocyte-seeded gelatin scaffolds were cultured in chondrogenic media containing 10 ng/mL of $TGF-{\beta}1$. The amounts of HA in conditioned media and in scaffolds were determined by enzyme-linked immunosorbent assays. HAS2 mRNA expression was analyzed by semi-quantitative reverse transcription polymerase chain reaction. The uronic acid content and DNA content of the scaffolds were measured by using colorimetric and Hoechst 33258 assays, respectively. Cell proliferation was evaluated by using the alamarBlue assay. Scanning electron microscopy (SEM), histology, and immunohistochemistry were used for microscopic analysis of the samples. The upregulation of HAS2 mRNA levels by $TGF-{\beta}1$ stimulation was dose and time dependent. $TGF-{\beta}1$ was shown to enhance HA and uronic acid content in the scaffolds. Cell proliferation and DNA content were significantly lower in $TGF-{\beta}1$ treatments. SEM and histological results revealed the formation of a cartilaginous-like extracellular matrix in the $TGF-{\beta}1$-treated scaffolds. Together, our results suggest that $TGF-{\beta}1$ has a stimulatory effect on equine chondrocytes, enhancing HA synthesis and promoting cartilage matrix generation.

Effectiveness of Krill Oil in Regulating Skin Moisture

  • Yoon-Seok Chun;Jongkyu Kim;Ji-Hoon Lim;Namju Lee;Sae-kwang Ku
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.359-368
    • /
    • 2023
  • This study aims to explore the impact of Krill Oil (KO, SuperbaTM Boost) on skin moisturization regulation. The research involved five groups: an intact control, a reference group (L-AA 100 mg/kg), and KO groups (400, 200, and 100 mg/kg), each comprising ten mice. Oral administration was conducted for 8 weeks (56 days), during which changes in body weight, hyaluronan, collagen type 1 (COL1), transforming growth factor-β1 (TGF-β1), ceramide, and water contents were analyzed in dorsal back skin tissue. Real-time PCR was employed to assess gene expression related to hyaluronic acid synthesis (HAS1, HAS2, HAS3), COL1 synthesis (COL1A1 and COL1A2), and TGF-β1. Results demonstrated that KO administration significantly increased hyaluronan content, hyaluronic acid synthesis (HAS1, HAS2, HAS3), COL1 content, COL1 synthesis (COL1A1 and COL1A2), TGF-β1 content, TGF-β1 mRNA expression, ceramide content, and water content in a concentration-dependent manner compared to the intact control. Importantly, no discernible disparities were noted between the KO and L-AA groups, even though they received equivalent oral dosages. This study accentuates the potential utility of exogenous KO in the regulation of skin moisture, thus positioning it as a promising avenue for the development of nutricosmetics. Future research endeavors should delve into the role of KO in safeguarding against both intrinsic and extrinsic aging-related skin manifestations, as well as its potential to ameliorate skin wrinkles, in conjunction with its moisturizing attributes.

STUDY ON MUTATION OF RAS GENE IN DMBA INDUCED CARCINOMA OF HAMSTER BUCCAL POUCH (DMBA로 유도된 햄스터 협낭암종에서 ras 유전자 변이에 관한 연구)

  • Song, Sun-Chul;Kim, Kyung-Wook;Lee, Jae-Hoon;Kim, Chang-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.581-590
    • /
    • 2000
  • Alterations in the cellular genome affecting the expression or function of genes controlling cell growth and differentiation are considered to be the main cause of cancer. Over 30 oncogenes can be activated by insertional mutagenesis, single point mutations, chromosomal translocations and gene amplification. The ras oncogenes have been detected in $15{\sim}20%$ of human tumors that include some of the most common forms of human neoplasia and are known to acquire their transforming properties by single point mutations in two domains of their coding sequences, most commonly in codons 12 and 61. The ras gene family consists of three functional genes, N-ras, K-ras and H-ras which encode highly similar proteins of 188 or 189 amino acid residues generically known as P21. ras proteins have been shown to bind GTP and GTP, and possess intrinsic GTPase activity. Experimental study was performed to observe the mutational change of the ras gene family and apply the results to the clinical activity. 36 Golden Syrian Hamster each weighing $60{\sim}80g$ were used and painted with 0.5% DMBA by 3 times weekly on the right buccal cheek(experimental side) for 6, 8, 10, 12, 14 and 16 weeks. Left buccal cheek (control side) was treated with mineral oil as the same manner of the right side. The hamsters were sacrificed on the 6, 8, 10, 12, 14 & 16 weeks. Normal and tumor tissues from paraffin block were completely dissected by microdissection and DNA from both tissue were isolated by proteinase K/phenol/chloroform extraction. Segments of the K-ras and H-ras gene were amplified by PCR using the oligonucleotide primers corresponding to the homologous region (codon 12 and 61) of the hamster gene, and then confirmational change of ras genes was observed by SSCP and autosequencing analysis. The results were as follows : 1. Malignant lesion could be found in the experimental side from the experimental six weeks. 2. One hamster among six showed point mutation of the H-ras codon 12($G{\rightarrow}A$ transition) at the experimental 10 and 14 weeks. 3. One of six at 6 weeks, two of six at 8 weeks and one of six at 12 weeks revealed the confirmational change of the H-ras codon 61($A{\rightarrow}T$ transversion). 4. The incidence of point mutation of H-ras codon 12 and 61 were 5.5%(2 of 36) and 11%(4 of 36) respectively. 5. Point mutation of the K-ras could not be seen during the whole experimental period. Form the above results, these findings strongly support the concept that H-ras oncogenes may have the influence of the DMBA induced carcinoma of hamster buccal pouch.

  • PDF

Gene Expression of Smad3 and Estrogen Receptor-related $Receptor\;{\beta}$ like 1 in Sea Urchin, Strongylocentrotus nudus (둥근성게(Strongylocentrotus nudus)의 Smad3와 Estrogen Receptor-related $Receptor\;{\beta}$ like 1 유전자 발현)

  • Jun, Yu-Jung;Sohn, Young-Chang
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2007
  • Smad proteins mediate transforming growth $factor(TGF)-{\beta}$ signaling and play a pivotal role in embryonic development. The estrogen receptor-related receptors(ERRs), which are structurally similar to estrogen receptors, are members of orphan nuclear receptor in the nuclear receptor superfamily and their functions are known to be involved in the formation of extra-embryonic ectoderm. To investigate the involvement of Smad3 and $ERR{\beta}$ like 1 in reproductive activities and embryogenesis in marine invertebrate, we examined gene expression of Smad3 and $ERR{\beta}$ like 1 in Strongylocentrotus nudus during their seasonal changes and embryonic development using real-time polymerase chain reaction. The Smad3 mRNA levels in gonad showed an increasing pattern from February to June 2004 but decreased at August(spawning season) followed by an elevation of the levels at October and December 2004. The mRNA levels of the $ERR{\beta}$ like 1 significantly elevated during the spawning season. During embryonic development, Smad3 mRNA levels at $8{\sim}16$ cell stages were significantly higher than those of other stages, whereas the mRNA of the $ERR{\beta}$ like 1 was significantly high levels at late development stages, i.e., blastular, gastrula and plutei stages. These results suggest that the Smad3 could be involved at least in part in the early cleavage stages and the $ERR{\beta}$ like 1 may play an important role in the spawning season and late developmental stage in the sea urchin.

  • PDF