• Title/Summary/Keyword: transformed yeast

Search Result 85, Processing Time 0.023 seconds

Studies on the Organization and Transcription of Aspergillus nidulans tRNA Genes (Aspergillus nidulans의 tRNA 유전자의 구성과 발현에 관한 연구 II. Aspergillus nidulans 총 tRNA 유전자의 cloning)

  • 이병재;강현삼
    • Korean Journal of Microbiology
    • /
    • v.21 no.4
    • /
    • pp.229-237
    • /
    • 1983
  • Total tRNA genes from Aspergillus nidulans were cloned for the further investigation of the structure and expression of Aspergillus tRNA genes. Aspergillus DNA was isolated from spores and cloned into pBR322 plasmid DNA using BamHI and $T_4$ ligase. The recombinant hybrid DNA was transformed into E. coli HB101 and some 30,000 transformants were initially selected. Of these, about 5,300 E. coli clones containing Aspergillus DNA inserted into plasmid pBR322 at BamHl site have been isolated. The hybridization data obtained from the labeled Aspergillus $^{32}P-tRNA$ indicated that 105 colonies carried the total tRNA genes. From the data above and cohybridization experiment, tRNA genes of Aspergillus nidulans seem to be twice more clustered than those of yeast.

  • PDF

Establishment of an Antibacterial Yeast That Producing Bacteriocin Subpeptin JM4-A or Subpeptin JM4-B (박테리오신 Subpeptin JM4-A 혹은 Subpeptin JM4-B를 생산하는 항균 효모의 제작)

  • Lee, Ok-Hee;Jang, Min-Kung;Lee, Dong-Geun;Kim, In-Hae;Lee, Jae-Hwa;Ha, Jong-Myung;Ha, Bae-Jin;Ahn, Ik-Yong;Cho, Dong-In;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.287-290
    • /
    • 2008
  • In order to obtain yeast cells producing a bacteriocin, Subpeptin JM4-A or Subpeptin JM4-B, the 48 bp oligonucleotides corresponding to Subpeptin JM4-A and Subpeptin JM4-B genes including codon for start and stop were chemically synthesized and cloned into pAUR123, an yeast expression vector. Transformed yeast cells exhibited growth inhibition of Bacillus subtilis, Escherichia coli and Pseudonomas aeruginosa. This result indicates that yeast cells producing Subpeptin JM4-A or Subpeptin JM4-B possess bacteriocidal properties against both Gram positive B. subtilis and Gram negative E. coli and P. aeruginosa cells. The recombinant yeast strains constructed in this study can be applied in the food preservative or. animal foodfeed.

Functional Screening of Plant Genes Suppressed Salt Sensitive Phenotype of Calcineurin Deficient Mutant through Yeast Complementation Analysis (애기장대의 염해 저항성 관련 유전자의 기능적 선별)

  • Moon, Seok-Jun;Park, Soo-Kwon;Hwang, Un-Ha;Lee, Jong-Hee;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo;Shin, Dongjin
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Understanding salt tolerance mechanisms is important for the increase of crop yields, and so, several screening approaches were developed to identify plant genes which are involved in salt tolerance of plants. Here, we transformed the Arabidopsis cDNA library into a salt-sensitive calcineurin (CaN)-deficient ($cnb{\Delta}$) yeast mutant and isolated the colonies which can suppress salt-sensitive phenotype of $cnb{\Delta}$ mutant. Through this functional complementation screen, a total of 34 colonies functionally suppressed the salt-sensitive phenotype of $cnb{\Delta}$ yeast cells, and sequencing analysis revealed that these are 9 genes, including CaS, AtSUMO1 and AtHB-12. Among these genes, the ectopic expression of CaS gene increased salt tolerance in yeast, and CaS transcript was up-regulated under high salinity conditions. CaS-antisense transgenic plants showed reduced root elongation under 100 mM NaCl treatment compared to the wild type plant, which survived under 150 mM NaCl treatment, whereas CaS-antisense transgenic plant leaves turned yellow under 150 mM NaCl treatment. These results indicate that the expression of CaS gene is important for stress tolerance in yeast and plants.

Expression of recombinant plasmids harboring glucoamylase gene STA in saccharomyces cerevisiae (Glucoamylase 유전자 STA를 포함한 재조합 플라스미드들의 saccharomyces cerevisiae에서의 발현)

  • 박장서;박용준;이영호;강현삼;백운화
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.181-187
    • /
    • 1990
  • STA gene coding glucoamylase was introduced into haploid Saccharomyces cerevisiae SHY3 and polyploid Saccharomyces cerevisiae 54. We constructed the recombinant plasmid by substituting the promoter region of alcohol dehydrogenase isoenzyme I gene for that of STA gene to increase the expression of STA gene and found that the activity of glucoamylase was increased in transformants. The plasmid stability was improved remarkably when we got the STA gene into the plasmid which had centromere. The activity of glucoamylase and transformation frequency of it, however, was decreased because of low copy number. Industrial polyploid strain was transformed with the recombinant plasmid having the $2\mu$ origin of replication and STA gene. It produced more alcohol than host when fermented in liquefied starch media. The industrial strain, however, was not transformed with the autonomously replicating plasmid containing centromere.

  • PDF

Cloning of Bacillus amyloliquefaciens amylase gene using YEp13 as a vector I. Expression of cloned amylase gene in Escherichia coli (YEp 13 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I. Escherichia coli에서의 발현)

  • 이창후;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.155-160
    • /
    • 1986
  • $\alpha$-Amylase gene of B. amyloliquefaciens was cloned to E. coli-yeast shuttle vector YEp-13 and expressed in E. coli. Chromosomal DNA of B. amyloliquefaciens was partially digested with Sau3Al and YEp13 plasmid was cleaved with BamH1. The hybrid plasmid, pHA28, was constructed by shotgun method and transformed to E. coli C600 and HB101. The amount of $\alpha$-amylase produced by transformants of E. coli was about 20% to 30% of that produced by B. amyloli-quefaciens. About 65% of $\alpha$-amylase produced by transformant was secreted into periplasm and the others were located in cytoplasm. $\alpha$-Amylase production was maximal when transformants were cultivated for 15hr to 20hr. As the result of agarose gel electrophoresis, pHA28 plasmid was found to be various in its size. This result suggested that pHA28 plasmid was segregated.

  • PDF

Analysis of Secretion Behavior of Human Lysozyme from Recombinant Saccharomyces cerevisiae

  • MARTEN, MARK R.;NAM SOO HAN;JIN BYUNG PARK;JIN-HO SEO
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.576-581
    • /
    • 1999
  • Effects of signal sequences, protein sizes and dissolved oxygen on the secretion of human lysozyme from a recombinant yeast were experimentally characterized. The systems consisted of Saccharomyces cerevisiae host SEY2102 that was transformed with two different plasmids. These plasmids were identical with an exception to the plasmid pMC614, which contained the native yeast MFα1 sequence and the plasmid pMC632 with the non-native rat α-amylase signal sequence. The expression of human lysozyme was controlled by the ADHI promoter. The native yeast MFαl signal sequence was more efficient than the non-native rat α-amylase signal sequence in directing the secretion of human lysozyme. Lysozyme secreted with the α-amylase signal was retained inside the cells and released to the medium very slowly, thereby causing a lower cell growth rate and a decreased product secretion rate. Lysozyme was secreted more efficiently than invertase, which is an order of magnitude bigger in molecular size compared to lysozyme, which was under the direction of the MFαl signal sequence, suggesting that protein sizes may affect the secretion efficiency. When expressed in anaerobic conditions in the medium where the ADHI promoter was derepressed, the amount of lysozyme secreted was about twice higher than that of the aerobic culture. However, the secretion rates were identical. This result showed that the dissolved oxygen level may affect the efficiency of protein secretion only, and not the secretion rate of the product protein.

  • PDF

Cloning of Bacillus amyloliquefaciens amylase gene using YRp7 as a vector II. Expression of cloned amylase gene in Saccharomyces cerevisiae (YRp7 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I I. Saccharomyces cerevisiae에서 발현)

  • 서정훈;김영호;전도연;배영석;홍순덕;이종태
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.213-218
    • /
    • 1986
  • Hybrid plasmid pEA24, shuttle vector YRp7 carrying amylase gene of Bacillus amyloliquefaciens, was transformed to yeast Saccharomyces cerevisiae, and the expression of B. amyloliquefaciens amylase gene in yeast was investigated. The frequency of transformation to S. cerevisiae DBY747 with YRp7 was increased by treatment of 40% polyethylene glycol (MW 4, 000), PH 7.0, at 3$0^{\circ}C$, and by regeneration used 2% top agar. The amount of cellular amylase activity produced by S. cerevisiae containing pEA24 was 2% of that secreted from B. amyloliquefaciens, but in case of S. cerevisiae transformant, the amylase secreted was not detected. A comparison of genetic stability of pEA24 and YRp7 plasmids in yeast was carried out by cultivation of transformants in tryptophan-supplement-medium. The pEA24 plasmid was more unstable than YRp7 in S. cerevisiae. The size of pEA24 extracted from S. cerevisiae transformants was found to be identical with that from E. coli transformants by agarose gel electrophoresis.

  • PDF

Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata

  • Gao, Jin-Xin;Jing, Jing;Yu, Chuan-Jin;Chen, Jie
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about $6.39{\times}10^5$ transformants/$3{\mu}g$ pGADT7-Rec. The titer of the primary cDNA library was $2.5{\times}10^8cfu/mL$. The numbers for the cDNA library was $2.46{\times}10^5$. Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast

  • Lee, Ji-Soo;Hong, Soon-Kwang;Lee, Chang-Ro;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.625-632
    • /
    • 2019
  • The unified saccharification and fermentation (USF) system was developed for direct production of ethanol from agarose. This system contains an enzymatic saccharification process that uses three types of agarases and a fermentation process by recombinant yeast. The $pGMF{\alpha}-HGN$ plasmid harboring AGAH71 and AGAG1 genes encoding ${\beta}-agarase$ and the NABH558 gene encoding neoagarobiose hydrolase was constructed and transformed into the Saccharomyces cerevisiae 2805 strain. Three secretory agarases were produced by introducing an S. cerevisiae signal sequence, and they efficiently degraded agarose to galactose, 3,6-anhydro-L-galactose (AHG), neoagarobiose, and neoagarohexose. To directly produce ethanol from agarose, the S. cerevisiae $2805/pGMF{\alpha}-HGN$ strain was cultivated into YP-containing agarose medium at $40^{\circ}C$ for 48 h (for saccharification) and then $30^{\circ}C$ for 72 h (for fermentation). During the united cultivation process for 120 h, a maximum of 1.97 g/l ethanol from 10 g/l agarose was produced. This is the first report on a single process containing enzymatic saccharification and fermentation for direct production of ethanol without chemical liquefaction (pretreatment) of agarose.

Conversion of Xylose to Ethanol by Recombinant Saccharomyces cerevisiae Containing Genes for Xylose Reductase and Xylose Reductase and xylitol Dehydrogenase from Pichia stipitis

  • Jin, Young-Su;Lee, Tae-Hee;Choi, Yang-Do;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.564-567
    • /
    • 2000
  • A recombinant Saccharomyces cerevisiae, transformed with the genes encoding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) orginated from Pichia stipitis CBS 5776, was developed to directly convert xylose to ethanol. A fed-batch fermentation with the recombinant yeast produced 8.7 g ethanol/l with a yield of 0.13 g ethanol/g xylose consumed.

  • PDF