• Title/Summary/Keyword: transformed time scale

Search Result 66, Processing Time 0.035 seconds

Wavenumber analyses of panel vibrations induced by transonic wall-bounded jet flow from an upstream high aspect ratio rectangular nozzle

  • Hambric, Stephen A.;Shaw, Matthew D.;Campbell, Robert L.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • The structural vibrations of a flat plate induced by fluctuating wall pressures within wall-bounded transonic jet flow downstream of a high-aspect ratio rectangular nozzle are simulated. The wall pressures are calculated using Hybrid RANS/LES CFD, where LES models the large-scale turbulence in the shear layers downstream of the nozzle. The structural vibrations are computed using modes from a finite element model and a time-domain forced response calculation methodology. At low flow speeds, the convecting turbulence in the shear layers loads the plate in a manner similar to that of turbulent boundary layer flow. However, at high nozzle pressure ratio discharge conditions the flow over the panel becomes transonic, and the shear layer turbulence scatters from shock cells just downstream of the nozzle, generating backward traveling low frequency surface pressure loads that also drive the plate. The structural mode shapes and subsonic and transonic surface pressure fields are transformed to wavenumber space to better understand the nature of the loading distributions and individual modal responses. Modes with wavenumber distributions which align well with those of the pressure field respond strongly. Negative wavenumber loading components are clearly visible in the transforms of the supersonic flow wall pressures near the nozzle, indicating backward propagating pressure fields. In those cases the modal joint acceptances include significant contributions from negative wavenumber terms.

A Study on the Form and Symbolic Meaning of Shwedagon Pagoda (쉐다곤 불탑의 상징적 의미와 구성 형식에 대한 연구)

  • Kim, So-Young;Cheon, Deuk-Youm;Kwak, Yu-Jin
    • Journal of architectural history
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2016
  • The purpose of this study is to identify the aspect of expression about the form of Shwedagon Pagoda as well as to find out its meanings. The aesthetic value of Shwedagon Pagoda appears as the worship and infinite respect to Buddha realizing its beautiful sacred symbol. The meaning of Shwedagon Pagoda is to progress in keeping pace with the specific flexibility of Buddhism in Myanmar developing Buddhistic diversity and accepting its active changes. As time passes, Shwedagon Pagoda has been transformed. It is because that Myanmar's architecture was developed independently being affected by India with the introduction of Buddhism, and accepted it through autonomous reinterpretation. Then, the function of the worship space surrounding Shwedagon was extended and its annexes and statues of the Buddha were built; its scale became larger. This study shows the comparison between Shwezigon Pagoda and Shwedagon Pagoda. This method of investigation reveals that the formal changes of Shwedagon makes it transform to concise composition and develop aesthetical component giving the sense of vertical rise.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Systems Biology and Emerging Technologies Will Catalyze the Transition from Reactive Medicine to Predictive, Personalized, Preventive and Participatory (P4) Medicine

  • Galas, David J.;Hood, Leroy
    • Interdisciplinary Bio Central
    • /
    • v.1 no.2
    • /
    • pp.6.1-6.4
    • /
    • 2009
  • We stand at the brink of a fundamental change in how medicine will be practiced. Over the next 5-20 years medicine will move from being largely reactive to being predictive, personalized, preventive and participatory (P4). Technology and new scientific strategies have always been the drivers of revolutions and this is certainly the case for P4 medicine, where a systems approach to disease, new and emerging technologies and powerful computational tools will open new windows for the investigation of disease. Systems approaches are driving the emergence of fascinating new technologies that will permit billions of measurements on each individual patient. The challenge for health information technology will be how to reduce this enormous amount of data to simple hypotheses about health and disease. We predict that emerging technologies, together with the systems approaches to diagnosis, therapy and prevention will lead to a down turn in the escalating costs of healthcare. In time we will be able to export P4 medicine to the developing world and it will become the foundation of global medicine. The "democratization" of healthcare will come from P4 medicine. Its first real emergence will require the unprecedented integration of biology, medicine, technology and computation. as well as societal issues of major importance: ethical, regulatory, public policy, economic, and others. In order to effectively move the P4 scientific agenda forward new strategic partnerships are now being created with the large-scale integration of complementary skills, technologies, computational tools, patient records and samples and analysis of societal issues. It is evident that the business plans of every sector of the healthcare industry will need to be entirely transformed over the next 10 years.and the extent to which this will be done by existing companies as opposed to newly created companies is a fascinating question.

A Study on Playback of Ship Collision Accident Using Free Running Model Test (자유항주 모형시험을 활용한 선박 충돌사고 재현에 관한 연구)

  • Hansol Park;Nam Sun Son;Chun Seon Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.450-459
    • /
    • 2023
  • According to Korea Maritime Safety Tribunal, there have been 14,100 maritime accidents from 2017 to 2021. Among those accidents, ship collision accidents have been up to 1,275 cases. But in the accidents relating to small ships like a fishing vessel, analyzing the causes of the accidents would depend on statements of the persons related because there is often no navigational data. But those statements can be incorrect and give rise to disagreements between them so that it causes conflicts with each other during the trial. So a replay system of ship collision accident (RESCA) has been developed in order to reproduce the ship collision accident by using AIS, V-PASS or radar data. But the reproduced trajectory of ship collision accident is needed to be verified because it can be unreasonable physically. So a method to verify the reproduced trajectory and collect the physical data on ship collision accident is newly designed by using free running test. In the RESCA, the accident is reproduced using the navigational data from the trajectory for a ship and measured from free running model test for the other ship at the same time. Through free running test, the behavior of the model ship is transformed from model scale into real scale. In order to check into the accuracy of the new method, free running model tests by using RESCA are carried out on the actual ship collision accidents.

Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC) (플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화)

  • Kim, Byoung-Hee;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.505-512
    • /
    • 1998
  • In this study, two-layer thermal barrier coatings composed of plasma sprayed 0.3mm $ZrO_2(8wt% Y_2o_3)$ ceramic coating layer and O.lmm $NiCrAlCoY_20_3$ bond coating layer on AISI 316 were investigated microstructure of the coating, oxidation of the metallic bond coating and adhesive strength to evaluate the durability of coating layer after cyclic and isothermal test at 90$0^{\circ}C$. And quantitative phase analysis of $ZrO_2(8wt% Y_2o_3)$ ceramic coating was performed as a function of thermal exposure time using XRD technique. The results showed that the amount of m - 2rO, phase in the coating was slightly increased with increasing thermal exposure time at 90$0^{\circ}C$. The c/a ratio of t' - $ZrO_2$ in the as-sprayed coating was 1.0099 and slightly increased to 1.0115 after 100 hours heat treatment. It was believed that $Y_2O_3$ in high yttria tetragonaJ(t') was transformed to low yttria tetragonaJ(t) by $Y_2O_3$ diffusion with increasing thermal exposure time. The adhesive strength was gradually decreased as thermal exposure time increased. After the isothermal test, the failure predominantly occured in ceramic coating layer. On the other hand. the specimens after cyclic thermal test were mostly failed at bond coating/ceramic coating interface. The failure was oeeured by decreasing the bond strength between bond coating and oxide scale which were formed by oxidation of the metallic elements within bond coating and by thermal stress due to thermal expansion mismatches between the oxide scale and ceramic coating.

  • PDF

Synthesis and Characterization of Cu(In,Ga)Se2 Nanostructures by Top-down and Bottom-up Approach

  • Lee, Ji-Yeong;Seong, Won-Kyung;Moon, Myoung-Woon;Lee, Kwang-Ryeol;Yang, Cheol-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.440-440
    • /
    • 2012
  • Nanomaterials have emerged as new building blocks to construct light energy harvesting assemblies. Size dependent properties provide the basis for developing new and effective systems with semiconductor nanoparticles, quantized charging effects in metal nanoparticle or their combinations in 2 and 3 dimensions for expanding the possibility of developing new strategies for photovoltaic system. As top-down approach, we developed a simple and effective method for the large scale formation of self-assembled Cu(In,Ga)$Se_2$ (CIGS) nanostructures by ion beam irradiation. The compositional changes and morphological evolution were observed as a function of the irradiation time. As the ion irradiation time increased, the nano-dots were transformed into a nano-ridge structure due to the difference in the sputtering yields and diffusion rates of each element and the competition between sputtering and diffusion processes during irradiation. As bottom-up approach, we developed the growth of CIGS nanowires using thermal-chemical vapor deposition (CVD) method. Vapor-phase synthesis is probably the most extensively explored approach to the formation of 1D nanostructures such as whiskers, nanorods, and nanowires. However, unlike binary or ternary chalcogenides, the synthesis of quaternary CIGS nanostructures is challenging because of the difficulty in controlling the stoichiometry and phase structure. We introduced a method for synthesis of the single crystalline CIGS nanowires in the form of chalcopyrite using thermal-CVD without catalyst. It was confirmed that the CIGS nanowires are epitaxially grown on a sapphire substrate, having a length ranged from 3 to 100 micrometers and a diameter from 30 to 500 nm.

  • PDF

Studies on the improvement of the productivity of purse seine fishery-II - The sinking movements with the flow velocity on the model purse seine of the subjective power block and triplex (선망어업의 생산성 향상에 관한 연구-II - 파워불록과 트리플랙스용 선망 모형의 유속에 따른 침강거동 -)

  • Kim, Suk-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • It is the basic studies for productivity improvement and laborsaving of purse seine fishery. Because the seine shape is apt to be transformed in seine shooting process due to the effect of tide, this study is intended to establish 4 steps, whose flow velocity are 0, 2, 4 and 6cm/sec, in flume tank and perform the experiment to review the character. We used two model seines designed on the scale of 1 to 180 based on the power block seine, which is the mackerel purse seine generally used in the near sea of Jeju Island and triplex seine, which is the mackerel purse seine of one boat system fishing expected in the future, for the experiment, analyzed of the sinking movements on the two seines and its results are as follows. In the setting over the flow velocity 6cm/sec, experiment was impossible because of flying and transformation of seine were severe. The sinking movements of P seine and T seine generally showed linear phenomenon and the sinking speed showed gentle curve shape. Sinking tendency was distinguished by existence of flow velocity. When there is flow velocity, it showed the phenomenon that it sinking by similar type. Although sinking depth and sinking speed did not show distinguished classification, P seine shows bigger than T seine. When there was in flow velocity, the elapsed time(Et) and sinking depth (PDp, TDp) of P seine and T seine can be shown such experimental equations as PDp=(0.21V+4.96)Et-(0.62V-0.10) and TDp=(0.19V+4.95)Et-(0.72V+0.34). When there was in flow velocity, the elapsed time and siking speed (PSp, TSp) of P seine and T seine can be shown such experimental equations as $PSp=-0.11Et^2+1.42Et+1.75\;and\;TSp=-0.11Et^2+1.41Et+1.37$.

Analysis of Evacuation Time According to Variation of Evacuation Stairs' Width in Large-Scale Goshiwons (대규모 고시원의 피난계단 폭의 변화에 따른 피난소요시간 분석)

  • Oh, Su-cheol;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • This research compares and analyzes evacuation time depending on the change in stair width in case of fire at Goshiwons. For this, a simulation has been conducted based on possible evacuation time according to the calculation method for the number of people admittable to a specific target for fire fighting equipped with accommodation. Currently, Gosiwon, which is classified as an accommodation facility (a total floor area of 500 m2 or more), uses blind spots prescribed by the Fire Services Act, Building Act, and Parking Act to build a high-rise building on a small area of land, and most Gosiwon is transformed into a modified accommodation. This is in line with the owner's operating profit, so it is expected to show a continuous increase. Securing the golden time of Gosiwon evacuation time is the last bastion of Gosiwon residents who belong to the economically disadvantaged in our society, and we hope this study will serve as a starting point for discussions on revising related laws and regulations to establish a social safety net As a result of the evacuation simulation analysis, the evacuation time was the least when the width of the group and the evacuation stairs were expanded to 200cm, and the evacuation time of the existing building was reduced by up to 166.3 seconds by comparing 648.4 seconds and scenario 6. This analysis can be meaningful, in that the width of the evacuation stairs revision of related laws and regulations for the safety of multiplex available premises.

A Study on the Analysis of the Combustion Behavior and Carbonization Pattern of Vinyl Flooring on Which a Real-Scale Combustion Test Was Performed (실물 연소 실험이 진행된 비닐장판의 연소거동 및 탄화 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.120-125
    • /
    • 2019
  • A real-scale combustion test was conducted on a vinyl flooring in a divided space, with 50 mL of an inflammable liquid sprayed on it. The combustion behavior of the vinyl flooring was studied in real time, and the carbonization patterns of the surface and cross-sections of the carbonized vinyl floor were analyzed. When the flame ignited by gasoline reached its peak, a continuously flaming region, intermittent flaming region, plume region, etc., were formed. The combustion of 50 mL gasoline on vinyl flooring took 26 s, and a halo pattern was observed. This test involved spraying kerosene evenly on the vinyl flooring and attempting to ignite the flooring using a gas torch, which failed. After the combustion of the vinyl flooring was complete, its carbonized range was measured to be 600 mm in length and 380 mm in width, and the carbonized area was 1000 ㎟. Heat transformed the coated layer of surface of the carbonized vinyl flooring into a carbonized layer, which became harder. The analysis of cross-section of the boundary surface of the carbonized vinyl flooring using a stereoscopic microscope showed that the vinyl flooring was bubbling, and that the white boundary layer at the bottom of the coated layer had disappeared.