• 제목/요약/키워드: transferred energy

검색결과 425건 처리시간 0.113초

Prediction of Harbour Resonance by the Finite Difference Approach

  • Lee, Jung-Lyul;Park, Chan-Sung
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1998년도 정기학술강연회 발표논문 초록집 Annual Meeting of Korean Society of Coastal and Ocean Engineers
    • /
    • pp.124-129
    • /
    • 1998
  • When the strong wind or long wave energy is transferred into the water body of a harbour, the harbour exhibits oscillatory resonant motions which often cause significant damage to moored ships and navigation hazards. Therefore, a number of theoretical and numerical investigations of such resonant oscillations have been carried out but most of them were limited to harbours connected with open sea of constant depth. (omitted)

  • PDF

컴퓨터를 이용한 가정용 냉방기기의 실내쾌적조건 조절에 관한 실험적 연구 (An Experimental Study on the Comfortable Room Control Conditioning Using Personal Computer)

  • 조진호;이대우
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.442-447
    • /
    • 1988
  • To keep comfortable indoor condition, the existing air conditioning system is controlled by the ON/OFF temperature controller. The PID control unit is developed to control temperature and humidity simultaneously, and the Air-conditioning control system is transferred from the ON/OFF temperature controller to the PID control unit for experiment. As a result of this experiment, the PID control unit reduced energy consumption compared with the ON/OFF control unit.

  • PDF

Multiconfiguration Molecular Mechanics Studies for the Potential Energy Surfaces of the Excited State Double Proton Transfer in the 1:1 7-Azaindole:H2O Complex

  • Han, Jeong-A;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.365-371
    • /
    • 2010
  • The multiconfiguration molecular mechanics (MCMM) algorithm was used to generate potential and vibrationally adiabatic energy surfaces for excited-state tautomerization in the 1:1 7-azaindole:$H_2O$ complex. Electronic structures and energies for reactant, product, transition state were computed at the CIS/6-31G(d,p) level of theory. The potential and vibrationally adiabatic energies along the reaction coordinate were generated step by step by using 16 high-level Shepard points, which were computed at the CIS/6-31G(d,p) level. This study shows that the MCMM method was applied successfully to make quite reasonable potential and adiabatic energy curves for the excited-state double proton transfer reaction. No stable intermediates are present in the potential energy curve along the reaction coordinate of the excited-state double proton transfer in the 1:1 7-azaindole:$H_2O$ complex, indicating that these two protons are transferred concertedly. The change in the bond distances along the reaction coordinate shows that two protons move very asynchronously to make an $H_3O^+$-like moiety at the transition state.

海岸 鹽濕地 生態系의 에너지 流轉 (Energy Flow in a Coastal Salt Marsh Ecosystem)

  • Kim, Joon-Ho;Beung Tae Ryu
    • The Korean Journal of Ecology
    • /
    • 제8권3호
    • /
    • pp.153-161
    • /
    • 1985
  • Energy flow through the trophic levels was studied at a salt marsh ecosystem distinguished into low and high marsh. Gross primary productions of Suaedeto-Salicornietum and Artemisieto-Limonietum at low marsh were 8, 299 and 13, 154kca/$m^2$/yr, and those of Calama-grostetum and Sonchuso-Setaetum at high marsh were 17, 899 and 15, 177kca/$m^2$/yr, respectively. Efficiencies of solar energy utilization of plants were 1.7 and 2.6% at the former, and were 3.6 and 3.2% at the latter. Of gross productions, net primary productions were 3, 977 and 5, 280kca/m2/yr at low marsh and were 6, 354 and 5, 329kca/$m^2$/yr at high marsh, and the remainder, 52~67%, was consumed by respiration of plants. A small amount (0.03~0.04%) of the net primary production was flowed through grazing food chain and most amout was transferred into dead parts. Of dead parts, 40% was accuulated as litter and the rest was decomposed into detritus. In the detritus food chain, a little energy was utilized by detritus feeder, and a major by microorganism. The amounts of energy flowed through grazing and detritus feeders at high marsh were much more than those at low marsh, but tertary production as spider was Vice versa.

  • PDF

원전 급수펌프 구동용 터빈 제어시스템 개발 (A Development of Digital Control System for FWPT In Nuclear Power Plant)

  • 최인규;정창기;김병철;김종안;우주희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1885-1886
    • /
    • 2006
  • The thermal energy from nuclear fission is transferred to the steam generator which is a kind of a large heat exchanger. After the feedwater is injected into the steam generator and absorbs the thermal energy, it is converted into the steam. This steam goes into the turbine. The balance between the generated energy and the consumed energy is required for the nuclear power plant to be stable. For the purpose of which, the feed water, a parameter for energy transfer, should be controlled in stability. Usually, the nuclear power plants are operated in base load in the view of power system for the stability of fission system. Therefore, though there will be almost no unbalance, there can be some instability from unbalance in case of startup/shutdown or disturbance. In this case, the controllability of feedwater pump is very important for the quick recover of stability.

  • PDF

SOFC와 MCFC에 적용하기 위한 촉매연소-수증기 개질이 통합된 반응기의 성능에 관한 실험적 연구 (An Experimental Study on the Performances of a Coupled Reactor with Catalytic Combustion and Steam Reforming for SOFC and MCFC)

  • 강태규;김용모;이상민;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.364-377
    • /
    • 2014
  • The performances of a coupled reactor in which a steam reformer and a catalytic combustor were mounted simultaneously had been investigated and compared. The combustible offgas exhausted from the anode of SOFC and MCFC were utilized as heat sources for the endothermic steam methane reforming. The catalytic combustion was used in order to burn the combustible offgas. Thermal energy released by the catalytic combustion is directly transferred to the reformer surrounding the combustor. The various operational conditions such as fuel utilization rate, steam to carbon ratio, amount of catalysts, fuel cell loads were changed. And operating variables were comprehensively identified by sensitivity analysis. The fundamental results from this experimental study show the potential abilities of the coupled reactor. Therefore the results will be of help to design and manufacture the more better coupled reactor in the future.

Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products

  • Roshani, Mohammadmehdi;Phan, Giang;Faraj, Rezhna Hassan;Phan, Nhut-Huan;Roshani, Gholam Hossein;Nazemi, Behrooz;Corniani, Enrico;Nazemi, Ehsan
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1277-1283
    • /
    • 2021
  • It is important for operators of poly-pipelines in petroleum industry to continuously monitor characteristics of transferred fluid such as its type and amount. To achieve this aim, in this study a dual energy gamma attenuation technique in combination with artificial neural network (ANN) is proposed to simultaneously determine type and amount of four different petroleum by-products. The detection system is composed of a dual energy gamma source, including americium-241 and barium-133 radioisotopes, and one 2.54 cm × 2.54 cm sodium iodide detector for recording the transmitted photons. Two signals recorded in transmission detector, namely the counts under photo peak of Americium-241 with energy of 59.5 keV and the counts under photo peak of Barium-133 with energy of 356 keV, were applied to the ANN as the two inputs and volume percentages of petroleum by-products were assigned as the outputs.

BIM-DRIVEN ENERGY ANALYSIS FOR ZERO NET ENERGY TEST HOME (ZNETH)

  • Yong K. Cho;Thaddaeus A. Bode;Sultan Alaskar
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.276-284
    • /
    • 2009
  • As an on-going research project, Zero Net Energy Test Home (ZNETH) project investigates effective approaches to achieve whole-house environmental and energy goals. The main research objectives are (1) to identify energy saving solutions for designs, materials, and construction methods for the ZNETH house and (2) to verify whether ZNETH house can produce more energy than the house uses by utilizing Building Information Modeling (BIM) and energy analysis tools. The initial project analysis is conducted using building information modeling (BIM) and energy analysis tools. The BIM-driven research approach incorporates architectural and construction engineering methods for improving whole-building performance while minimizing increases in overall building cost. This paper discusses about advantages/disadvantages of using BIM integrated energy analysis, related interoperability issues between BIM software and energy analysis software, and results of energy analysis for ZNETH. Although this investigation is in its early stage, several dramatic outcomes have already been observed. Utilizing BIM for energy analysis is an obvious benefit because of the ease by which the 3D model is transferred, and the speed that an energy model can be analyzed and interpreted to improve design. The research will continue to use the ZNETH project as a testing bed for the integration of sustainable design into the BIM process.

  • PDF

LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구 (A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator)

  • 한단비;김윤지;염규인;신재린;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.

Modeling of a Compressed Air Energy Electrification by Using Induction Generator Based on Field Oriented Control Principle

  • Vongmanee, Varin;Monyakul, Veerapol
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1511-1519
    • /
    • 2014
  • The objective of this paper is to propose a modelling of a small compressed air energy storage system, which drives an induction generator based on a field-oriented control (FOC) principle for a renewable power generation. The proposed system is a hybrid technology of energy storage and electrification, which is developed to use as a small scale of renewable energy power plant. The energy will be transferred from the renewable energy resource to the compressed air energy by reciprocating air compressor to be stored in a pressurized vessel. The energy storage system uses a small compressed air energy storage system, developed as a small unit and installed above ground to avoid site limitation as same as the conventional CAES does. Therefore, it is suitable to be placed at any location. The system is operated in low pressure not more than 15 bar, so, it easy to available component in country and inexpensive. The power generation uses a variable speed induction generator (IG). The relationship of pressure and air flow of the compressed air, which varies continuously during the discharge of compressed air to drive the generator, is considered as a control command. As a result, the generator generates power in wide speed range. Unlike the conventional CAES that used gas turbine, this system does not have any combustion units. Thus, the system does not burn fuel and exhaust pollution. This paper expresses the modelling, thermodynamic analysis simulation and experiment to obtain the characteristic and performance of a new concept of a small compressed air energy storage power plant, which can be helpful in system designing of renewable energy electrification. The system was tested under a range of expansion pressure ratios in order to determine its characteristics and performance. The efficiency of expansion air of 49.34% is calculated, while the efficiency of generator of 60.85% is examined. The overall efficiency of system of approximately 30% is also investigated.