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INTRODUCTION

When the strong wind or long wave energy is transferred into the water body of a harbour,
the harbour exhibits oscillatory resonant motions which often cause significant damage to moored
ships and navigation hazards. Therefore, a number of theoretical and numerical investigations of
such resonant oscillations have been carried out but most of them were limited to harbours
connected with open sea of constant depth. As a first investigation, Lamb (1932) analyzed the
free oscillation in closed rectangular and circular basins. His solutions then clarified the natural
periods and modes of free surface oscillations related to these special configurations. As the next
approach to the practical situation, McNown (1952) studied the forced oscillation in a circular
harbour which is connected to the open sea through a narrow mouth. Since the radiation effect
was ruled out, his results showed a harbour resonance as it does in a closed basin. Similar
research was also carried out on rectangular harbours (Kravtchnenko and McNown, 1955).

Miles and Munk (1961) and Ippen and Goda (1962) realized that the open-sea was important
in allowing for the loss of energy radiated from a harbour. As an approach to the
arbitrary-shaped harbour but the constant depth region, Hwang and Tuck (1970) and Lee (1971)
developed numerical models by using the boundary integral element method. For application to
real depth-varying harbours, Mei and Chen (1975) provided a hybrid finite element model,
whereas Raichlen and Naheer (1976) developed a finite difference model.

The study of harbour resonance has been extended to take into account the effect of bottom
friction(Kostense et al, 1986), wave nonlinearity (Lapelletier and Raichlen, 1987, Mei and Agnon,
1989; Zhou et al., 1991), irregular wave incidence (Goda, 1985; Ouellet and Theriault, 1989),
viscous dissipation (Gember, 1986) and porous breakwater (Yu and Chwang, 1994).

The object of this study is to develope a finite difference version for harbour resonance
numerical model and to compare the developed model to Raichlen and Naheer (1976)'s finite
difference approach, which is used inside the harbour matched at the entrance to a solution for

the open-sea based on the Helmholtz equation.
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BASIC FORMULATION

Madsen and Larsen (1987) presented an implicit approach that can be handled with a
relatively small amount of computational effort. The governing equation is given by a set of

1st-order differential equations of hyperbolic type as
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where # is given by Cg/C, C is the phase speed and Cg is the group velocity. The
differential equations (1) appear to be similar to the system of equations governing nearly
horizontal flow in shallow water by introduction of the intermediate complex vector variable R.
The ADI(Alternating Direction Implicit) algorithm as described by Lee (1994) is invoked on a
staggered grid system.

In the present study, the radiating waves are supposed to be absorbed through all the
transmissive boundaries except for no flux land boundary. If the wave radiates toward the x
—direction, the S can be accounted for by the following Neumann relationship of complex at the

transmissive boundary as
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When the §;; is situated at the center of grid cell adjacent to boundary, the unknowns posed at

boundaries can be determined by finite differencing according to the position which they are

sided as;

P,;=C,FS;;, Pi,;=C,F,S;; 3)
Qij=C,F;S;;, Qijs1=CyF,S;; 4)
where,
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The more detailed description of the treatment of boundary condition is omitted here.
125



NUMERICAL RESULTS

The present model was examined on
a rectangular harbour with linearly
varying depth presented by Raichlen and
Naheer (1976) as shown in Fig. 1. The
model layout is composed of an inner
basin represented: by the length !
=31.15cm times the width 5=6.03cm and
an outer basin of size Bx L. The width
and length of the outer basin were
B=200, L=5b,

after examined so as to

selected as
respectively,
yield the best fitting results when
compared to the analytic solution and

Raichlen and Naheer (1976)'s results.

Fig.

1

Definition sketch of a rectangular
harbour with linearly varying depth.

The grid spacings in x and y-directions are uniformly given by Jx=1//60 and dy=b/5,

respectively,. The h; is given 7.62cm as the depth of outer basin and & the depth at the

backwall.

Fig. 2 shows the harbour resonance determined for a basin of constant depth. The numerical

results show a remarkable agreement with analytic solutions. For four ratios of depths, the

computed resonance curves were compared to the numerical results obtained by Raichlen and

Naheer (1976) as shown in Fig. 3. The agreement is seen to be good. However, the results

shown are for the particular cases to provide most satisfied ones. The magnitude of resonance

peak appears to vary somewhat according to the outer basin size. The reason is probably due to

the imperfect absorption of radiating waves which is caused by use of the finite difference

algorithms used instead of a matching approach.

CONCLUSION

The numerical simulation has been accomplished on a rectangular harbour of linear varying

depth. In conclusion, the present finite difference model provided the satisfactory results in most

of cases but both width and length of outer basin, width in particular, appeared to have influence
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Fig. 2 Resonance curve for a harbour of constant depth.
e: Computed by present model; — : Analytic sol.
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Fig. 3 Resonance curves at the backwall for four depth ratios.
o: Computed by present model; — : Numerical solution
by Raichlen and Naheer(1976). ((A) A/hy=0, (B) h/h,=0.33

(C) h/ h3=067, and (D) h/hy=1).
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on the magnitude of resonance peaks. As the further study, therefore, such sensitivity problem
resulted from the size of outer basin is under study. Since the major advantage of present model
is that the radiating waves can be handled without introduction of matching condition at the
entrance, the present model, which has been developed by use of finite difference scheme, is

expected to be easily used even to the complicated harbour without any limitation in application.
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