• Title/Summary/Keyword: transferred energy

Search Result 428, Processing Time 0.028 seconds

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

Magnetic refrigerator for hydrogen liquefaction

  • Numazawa, T.;Kamiya, K.;Utaki, T.;Matsumoto, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

Far Infrared Emissivity of Wood Material - Comparing the Three Heat Transfer Modes of Wood Box and Aluminum Box

  • Lee, Hwa-Hyoung;Bender, Donald A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.440-450
    • /
    • 2009
  • In case of wood flooring, the high emissivity would be one of the most important properties especially as the cover material of underfloor heating system. The FIR (Far Infrared) materials such as wood emit FIR energy by heating, which has been used as the medical therapy such as dry sauna. This research investigated the emissivity and the emission power of wood composites by comparing the amount of the three heat transfer modes transferred by infrared radiation which came from the increased temperature of the bottom board of the plywood box by the heater. The results showed the value of radiation mode was the highest mode for the plywood box, and the convection mode was the main mode for the aluminum box. The rate of convection was 81.8% in the aluminum box and 48.2% in the plywood box, respectively. In case of the rate of radiation, the aluminum box showed only 15.4% and the plywood box showed 51%. The emissivity and the emission power of birch plywood showed the same values as those of wood. The amount of energy required for the temperature rising of water within vial in the aluminum box and in the plywood box were 3.32 kJ and 6.70 kJ respectively, which showed that the vial temperature of the plywood box was two times higher than that of the aluminum box.

Verification of the Validity of Moisture Transfer Model for Prediction of Indoor Moisture Generation Rate (실내 수증기 발생량 예측을 위한 습기 전달 모델의 검증에 관한 연구)

  • Lee, Dong-Kweon;Kim, Eui-Jong;Choi, Won-Ki;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 2006
  • Moisture in a building is one of the most important variables influencing building performance, human health, and comfort of indoor environment. However, there are still lacks in the knowledge of understanding the moisture problem well and controlling moisture. Accordingly, in order to provide the fundamental data to control moisture contents in the indoor air, this study was to predict moisture contents transferred through building envelopes and indoor moisture generation rate. Moisture transfer model was made by physical relations in each node, and the indoor moisture generation rate was gained by comparing the model with experimental analyses. From the study, we found out that moisture generation rate was critical and day-periodic, so that we predicted the indoor moisture content by substituting the constant value gained from the average in a day for the moisture generation rate.

Maximum Power Recovery of Regenerative Braking in Electric Vehicles Based on Switched Reluctance Drive

  • Namazi, Mohammad Masoud;Saghaiannejad, Seyed Morteza;Rashidi, Amir;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.800-811
    • /
    • 2018
  • This paper presents a regenerative braking control scheme for Switched Reluctance Machine (SRM) drive in Electric Vehicles (EVs). The main purpose is to maximize the recovered energy during battery charging by taking into account the nonlinear physical characteristics of the Switched Reluctance Machine. The proposed regenerative braking method employs the back-EMF in the generation process as a complicated position-dependent voltage source. The proposed maximum power recovery (MPR) operation of the regenerative braking is first based on the maximization of the extracted power from the machine and then the maximization of the power transferred to the battery. The maximum power extraction (MPE) from SRM is based on maximizing the energy conversion ratio by the calculation of the optimum PWM switching duty cycle, turn-on, and turn-off angles. By using the impedance matching theorem that allows the maximum power transfer (MPT) of the MPE, the proposed MPR is achieved. The parametric averaged value modeling of the machine phase currents in the chopping control mode is used for MPR realization. By following this model, a nonlinear equivalent input resistance is derived for the battery internal resistance matching. The effectiveness of the proposed regenerative braking method is demonstrated through simulation results and experimental implementation.

Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio (고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터)

  • Kang, Jung-Min;Lee, Sang-Hyun;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

The output characteristics of pulsed Nd:YAG laser using Zero Crossing method (Zero Crossing 방식을 이용한 펄스형 Nd:YAG 레이저의 출력 특성)

  • Hong, J.H.;Moon, D.S.;Noh, K.K.;Kim, W.Y;Kang, Uk;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2104-2106
    • /
    • 2000
  • For general laser power supply. output of the secondary of the power transformer is connected to the rectifier and filter capacitor. The output of a rectifier is applied to a switching element in the secondary of the transformer. So, power supply is complicated and the loss of switching is considerably. In addition, according to increasing pulse repetition. charged energy of energy storage capacitor is not transferred sufficiently to flashlamp. and laser output efficiency decreases. In this paper, to improve laser efficiency. we designed and fabricated the power supply in which the SCR was turned on in zero point by the method of ZCC(zero crossing control)in result, laser output efficiency in creased by about 3.5% other than conventional supply. when a repetition rate was increased by 10[pps]. In 60[pps]. efficiency was about 20%.

  • PDF

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.

Development Of Four-Dimensional Digital Speckle Tomography For Experimental Analysis Of High-Speed Helium Jet Flow (고속 헬륨 제트 유동의 실험적 분석을 위한 4차원 디지털 스펙클 토모그래피 기법 개발)

  • Ko, Han-Seo;Kim, Yong-Jae
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.193-203
    • /
    • 2006
  • A high-speed and initial helium jet flow has been analyzed by a developed four-dimensional digital speckle tomography. Multiple high-speed cameras have been used to capture movements of speckles in multiple angles of view simultaneously because a shape of a nozzle for the jet flow is asymmetric and the initial jet flow is fast and unsteady. The speckle movements between no flow and helium jet flow from the asymmetric nozzle controlled by a solenoid valve have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The four-dimensional density fields for the high-speed helium jet flow have been reconstructed from the deflection angles by a developed real-time tomography method.