• Title/Summary/Keyword: transferred energy

Search Result 424, Processing Time 0.035 seconds

Dynamic response of free-end rod with consideration of wave frequency

  • Kim, Sang Yeob;Lee, Jong-Sub;Tutumluer, Erol;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • The energy transferred on drill rods by dynamic impact mainly determines the penetration depth for in-situ tests. In this study, the dynamic response and transferred energy of drill rods are determined from the frequency of the stress waves. AW-type drill rods of lengths 1 to 3 m are prepared, and strain gauges and an accelerometer are installed at the head and tip of the connected rods. The drill rods are hung on strings, allowing free vibration, and then impacted by a pendulum hammer with fixed potential energy. Increasing the rod length L increases the wave roundtrip time (2L/c, where c is the wave velocity), and hence the transferred energy at the rod head. At the rod tip, the first velocity peak is higher than the first force peak because a large and tensile stress wave is reflected, and the transferred energy converges to zero. The resonant frequency increases with rod length in the waveforms measured by the strain gauges, and fluctuates in the waveforms measured by the accelerometer. In addition, the dynamic response and transferred energy are perturbed when the cutoff frequency is lower than 2 kHz. This study implies that the resonant frequency should be considered for the interpretation of transferred energy on drill rods.

Rod effects on transferred energy into SPT sampler using smart measurement system

  • Park, Geunwoo;Kim, Namsun;Hong, Won-Taek;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.159-172
    • /
    • 2022
  • To improve the accuracy of the standard penetration test (SPT) results, smart measurement system, which considers the energy transfer ratio into the sampler (ETRSampler), is required. The objective of this study is to evaluate the effects of joints and rod length on the transferred energy into the sampler. The energy transfer ratios into the rod head (ETRHead) and ETRSampler, and the energy ratio from the head to the sampler (ERHS) were obtained using energy modules, which were installed at the rod head and above the SPT sampler. Linear regression analyses are conducted to correlate the ERHS with the number of joints, rod length, and SPT N-values. In addition, the dynamic resistances are calculated using both transferred energies into the rod head and into the sampler, and are compared with the corrected cone tip resistance measured from the cone penetration test (CPT). While the ETRHead are generally constant, but the ETRSampler and ERHS gradually decrease along the depth or the number of joints, except at certain depths with high SPT N-values. Thus, the ERHS can be estimated using the number of joints, rod length, and SPT N-values. The dynamic resistance evaluated by ESampler produces a better correlation with the corrected cone tip resistance than that by EHead. This study suggests that transferred energy into the SPT sampler may be effectively used for more accurate subsurface characterization.

Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods (전사 방법에 따른 그래핀의 표면 에너지 변화)

  • Yoon, Min-Ah;Kim, Chan;Won, Sejeong;Jung, Hyun-June;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.

Planar Type Flexible Piezoelectric Thin Film Energy Harvester Using Laser Lift-off

  • Noh, Myoung-Sub;Kang, Min-Gyu;Yoon, Seok Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.489.2-489.2
    • /
    • 2014
  • The planar type flexible piezoelectric energy harvesters (PEH) based on PbZr0.52Ti0.48O3 (PZT) thin films on the flexible substrates are demonstrated to convert mechanical energy to electrical energy. The planar type energy harvesters have been realized, which have an electrode pair on the PZT thin films. The PZT thin films were deposited on double side polished sapphire substrates using conventional RF-magnetron sputtering. The PZT thin films on the sapphire substrates were transferred by PDMS stamp with laser lift-off (LLO) process. KrF excimer laser (wavelength: 248nm) were used for the LLO process. The PDMS stamp was attached to the top of the PZT thin films and the excimer laser induced onto back side of the sapphire substrate to detach the thin films. The detached thin films on the PDMS stamp transferred to adhesive layer coated on the flexible polyimide substrate. Structural properties of the PZT thin films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). To measure piezoelectric power generation characteristics, Au/Cr inter digital electrode (IDE) was formed on the PZT thin films using the e-beam evaporation. The ferroelectric and piezoelectric properties were measured by a ferroelectric test system (Precision Premier-II) and piezoelectric force microscopy (PFM), respectively. The output signals of the flexible PEHs were evaluated by electrometer (6517A, Keithley). In the result, the transferred PZT thin films showed the ferroelectric and piezoelectric characteristics without electrical degradation and the fabricated flexible PEHs generated an AC-type output power electrical energy during periodically bending and releasing motion. We expect that the flexible PEHs based on laser transferred PZT thin film is able to be applied on self-powered electronic devices in wireless sensor networks technologies. Also, it has a lot of potential for high performance flexible piezoelectric energy harvester.

  • PDF

Energy Transfer Between Diatomic Molecules

  • Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-96
    • /
    • 1987
  • The effects of initial vibrational energy on VV energy transfer in the collinear collision of two diatomic molecules, either homonuclear or heteronuclear, has been studied over a range of collision energies in classical mechanics. When initial vibrational energy is very large, only a small fraction of vibrational energy in the excited molecule is transferred to the colliding partner. In this case, the VV step is found to be strongly coupled with VT during the collision. At low collision energies, energy transfer in the homonuclear case of $O_2$+ $O_2$ with small initial vibrational energy is found to be very inefficient. In the heteronuclear case of CH + HC with the initial energy equivalent to one vibrational quantum, VV energy exchange is found to be very efficient at such energies. Between 0.3 and 0.5 ev, nearly all of vibrational energy of the excited molecule with one to about three vibrational quanta in CH + HC is efficiently transferred to the colliding partner through pure VV process in a sequence of down steps during the collision. The occurrence of multiple impacts during the collision of two heteronuclear molecules and the collisional bond dissociation of homonuclear molecules are also discussed.

Measurement and Control of the Resonance Frequency for the Transcutaneous Energy Transmission System (TET) Using the Phase Locked Loop Circuit (PLL) (PLL을 이용한 무선 전력전송 장치의 공진 주파수의 계측 및 주파수 제어)

  • Choi, S.W.;Shim, E.B.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1613-1616
    • /
    • 2008
  • A Transcutaneous Energy Transmission System (TET) has been developed for the wireless energy transmission with two magnetically coupled coils. A resonance circuit is used to raise the induced voltage and current of the secondary coil. Its resonance frequency depends on the internal resistance of circuit and the transferred energy. Because the transferred energy usually changes in wide range, the output voltage is unstable and the energy transferring efficiency decrease. A push-pull class E amplifier is usedto generate high frequency AC voltage. To maintain proper resonance frequency, the voltage output of the amplifier was continuously monitored and adjusted to the optimized resonance frequency. Because of its high frequency (370 kHz), a phase lockedloop circuit and a comparator are used to monitor the output waveform. The results of experimentaldata show that the PLL circuit can increase the transmission efficiency and stabilize the output voltage of TET.

  • PDF

The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation

  • Zhu, Xiaohua;Liu, Weiji
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.195-204
    • /
    • 2018
  • Based on theories of rock mechanics, rock fragmentation, mechanics of elasto-plasticity, and energy dissipation etc., a method is presented for evaluating the rock fragmentation efficiency by using plastic energy dissipation ratio as an index. Using the presented method, the fragmentation efficiency of rocks with different strengths (corresponding to soft, intermediately hard and hard ones) under indentation is analyzed and compared. The theoretical and numerical simulation analyses are then combined with experimental results to systematically reveal the fragmentation mechanism of rocks under indentation of indenter. The results indicate that the fragmentation efficiency of rocks is higher when the plastic energy dissipation ratio is lower, and hence the drilling efficiency is higher. For the rocks with higher hardness and brittleness, the plastic energy dissipation ratio of the rocks at crush is lower. For rocks with lower hardness and brittleness (such as sandstone), most of the work done by the indenter to the rocks is transferred to the elastic and plastic energy of the rocks. However, most of such work is transferred to the elastic energy when the hardness and the brittleness of the rocks are higher. The plastic deformation is small and little energy is dissipated for brittle crush, and the elastic energy is mainly transferred to the kinetic energy of the rock fragment. The plastic energy ratio is proved to produce more accurate assessment on the fragmentation efficiency of rocks, and the presented method can provide a theoretical basis for the optimization of drill bit and selection of well drilling as well as for the selection of the rock fragmentation ways.

Wireless Synchronous Transfer of Power and Reverse Signals

  • Li, Yang;Li, Yumei;Feng, Shaojie;Yang, Qingxin;Dong, Weihao;Zhao, Jingtai;Xue, Ming
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.827-834
    • /
    • 2019
  • Wireless power transfer via coupled magnetic resonances has been a hot research topic in recent years. In addition, the number of related devices has also been increasing. However, reverse signals transfer is often required in addition to wireless power transfer. The structure of the circuit for a wireless power transfer system via coupled magnetic resonances is analyzed. The advantages and disadvantages of both parallel compensation and series compensation are listed. Then the compensation characteristics of the inductor, capacitor and resistor were studied and an appropriate compensation method was selected. The reverse signals can be transferred by controlling the compensation of the resistor. In addition, it can be demodulated by extracting the change of the primary current. A 3.3 MHz resonant frequency with a 100 kHz reverse signals transfer system platform was established in the laboratory. Experimental results demonstrate that wireless power and reverse signals can be transferred synchronously.

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1561-1565
    • /
    • 2012
  • The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

Operation characteristics of fast pulse generator using a 2-stage magnetic switch (2단 자기스위치를 사용한 고속 펄스발생기의 동작 특성)

  • 김복권;권순걸;서기영;이현우
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.139-147
    • /
    • 1996
  • In this study a two-stage fast pulse generaor using magnetic switches is proposed. The scheme consist of a switch, an inductor and two pairs of capacitor and saturable inductors, a linear transformer. The basic principle and the operation are described using a set of given parameters. The main issue of the magnetic pulse genration scheme is the system efficiency. This study focuses on the system efficiency improvement using magnetic switches. The voltage compression ratio, energy transfer with respect to core area are investigated. The output voltage and transferred energy as a function of input voltage are also included. Also, an analysis and experiments are performed to verify the porposed topology by implementing a 10[J] class experimental circuit. The efficiency of the transferred energy a tload side is 82%.

  • PDF