• 제목/요약/키워드: transfer mold

검색결과 201건 처리시간 0.027초

RTM공법을 이용한 승용차용 복합재료 휠의 표면정도 향상 및 개발 (Improvement of Surface Quality and Development of Composite Wheel for Passenger Cars Manufactured by RTM)

  • 김포진;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2003
  • Since passenger cars require five wheels including a spare, the weight reduction of wheels without sacrificing performance is important. Recently, the structured components of cars made of steel are replaced by composites. plastics and other nonmetallic materials such as aluminum and magnesium for weight reduction. From these new tried materials are most promising due to their high specific stiffness and specific strength. The composites manufactured by resin transfer molding (RTM) process has not only low cost for the manufacturing but also reduces the lead time and development because the molds for RTM is easy to manufacture. In this work, composite wheels for passenger cars were designed and manufactured by RTM process. Since surface quality of wheels is important for passenger cars, the optimal stacking sequence for composite wheels was selected considering surface quality and mechanical properties. Also, the manufacturing method for the composite mold was depicted.

  • PDF

계란선별기 파커홀더 캠 개발 (Cam Design of Packer Holder in Egg Grading Machine)

  • 이장용
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.897-904
    • /
    • 2008
  • Egg grading machine is used in poultry raising industry to classify eggs by their weight and to pack up them. Packer holder mechanism is a main part of the egg grading machine, of which role is to take eggs fallen from conveyor belt, and afterward to transfer eggs vertically to mold tray. The vertical motion of packer holder is usually driven by slider-crank mechanism or cam. This paper describes development of the cam in packer holder based on kinematic analysis of packer holder mechanism and measurement of acceleration and noise of the cam to verify performance of it. Several cams that are designed and manufactured by the author of this paper according to different design specification are compared to determine the best solution for egg transfer in the packer holder mechanism.

수지 충전 공정을 이용한 복합재 조종봉 제조 기술 개발 (Development of Manufacturing Process of Composite Control Rods using Resin Transfer Molding Process)

  • 이상관;엄문광;변준형;양승운;김광수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.253-256
    • /
    • 2000
  • In order to commercialize the low cost composite fabrication technology in the area of domestic aerospace structure field, Resin Transfer Molding process has been considered as an alternative process to replace the high cost autoclave technology. The end part for the development of RTM process is the control rod of flight control system of aircraft. A braided preform was triaxially designed to improve the dimensional stability and mechanical property in the direction of external loads. Through the flow analysis using CVFEM, the resin filling time was calculated and the resin injection method was determined. The results of the flow analysis were directly applied to RTM mold design. The control rod was successfully manufactured by RTM process using internal pressure. The length and outer diameter of the manufactured part are 1148mm and 32mm, respectively.

  • PDF

금속 우라늄봉의 연속주조공정에 대한 열전달 및 응고해석 (Numerical Analysis of Heat Transfer and Solidification in the Continuous Casting Process of Metallic Uranium Rod)

  • 이주찬;이윤상;오승철;신영준
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.80-88
    • /
    • 2000
  • Continuous casting equipment was designed to cast the metallic uranium rods, and a thermal analysis was carried out to calculate the temperature and solidification profiles. Fluid flow and heat transfer analysis model including the effects of phase change was used to simulate the continuous casting process by finite volume method. In the design of continuous casting equipment, the casting speed, pouring temperature and cooling conditions should be considered as significant factors. In this study, the effects of casting speed, pouring temperature, and air gap between the uranium and mold were investigate. The results represented that the temperature and solidification profiles of continuous casting equipment varied with the casting speed, pouring temperature, and air gap.

  • PDF

GMA 위보기 및 수직자세 초층용접 최적조건 선정에 관한 실험적 연구 (A Experiment Study on Selection the Optimal Condition for GMA Root-pass Welding in Overhead and Vertical Position)

  • 김지선;김인주;김일수
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.42-48
    • /
    • 2012
  • Due to increase in demand of stable and long pipelines in natural gas industry, wide range of researches are being performed on automation welding to improved welding quality with respect to weld process parameters in real time measurement. In particular, the coupling between the pipe manufacturing process and location of the weld seam, the measured size of the gap that exists in the weld position and the weld angle depending on whether the movement of molten weld. This is due to absence of controlling welding penetration position, depending on the required size of the angle of the setting. In addition, the optimum welding conditions must be considered while selecting, the correlation between these variables and the systematic correlation has not yet been identified. Therefore, in most welded pipe root-pass weld solely depends on the experience of workers in relation to secure a stable weld quality. In this study, automation welding system is implemented to select a suitable root-pass STT (Surface Tension Transfer) welding method using the optimal welding conditions. To successfully accomplish this objective, there were various welding conditions used for welding experiment to confirm that the assessment required for construction through the pipe and automatic welding process is proposed to optimize this plan.

탄소 섬유강화 복합소재의 고압 수지이송 성형공정에서 직선형 믹싱헤드의 성능 및 유용성 평가 (Performance and Feasibility Evaluation of Straight-Type Mixing Head in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material)

  • 한범정;정용채;황기하;강명창
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.157-165
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) technology has been commercialized for fast production of fiber reinforced composite materials. The high-pressure mixing head was one of the most core component of the HP-RTM process. In this study, a mixing head was systematically designed, manufactured and evaluated. This mixing head was composed of a nozzle, a mixing chamber, a cleaning piston part, and an internal mold release part. In actual, a straight-type structure was newly designed instead of the conventional L-type structure for improving the maximum mixing pressure and mixing ratio precision. The performance of mixing head was showed maximum mixing pressure of 15.22MPa and mixing ratio precision of 0.12%. CFRP molding experiments were successfully obtained a 6~11 laminating carbon sheet using HP-RTM presses and specimen molds.

비선형 열전달 계수를 사용한 알루미늄 6082 빌렛의 열간 압축 공정 해석 (Analysis of Hot Compression Process of Aluminum 6082 Billet using Nonlinear Heat Transfer Coefficient)

  • 전효원;서창희;권태하;박춘달;전진호;최현열;강경필
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.5-14
    • /
    • 2019
  • In order to reduce the weight of automobile parts, automobile parts using aluminum alloy are being developed. Aluminum alloy for automobile parts is mainly made of Al6xxx (Al-Mg-Si) type alloy, which is excellent in hot forming property, and it can increase mechanical properties by the use of heat treatment. In this study, hot forming was performed using Al6082. Before the hot forming, the forming analysis was performed using the DEFORM-3D finite element analysis program in this case. For the forming analysis, the heat transfer coefficient was derived from the experiment, and the forming analysis was performed by applying it. At the forging analysis, the temperature of Al6082 material was set to 813K and that of the mold was set to room temperature. After the forging analysis, the experiment was performed, and the forging analysis and the experimental results were compared.

연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동 (Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels)

  • 김현철;이재현;권오덕;임창희
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.

Co-Cr-Mo 합금의 선삭 가공 특성에 관한 연구 (A Study on the Machining Characteristics of Co-Cr-Mo Alloy in Turning Process)

  • 홍광표;조명우;최인준
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.50-54
    • /
    • 2017
  • In this study, researches were conducted as follows. First, as the basic experiment, the cutting speed, feedrate, and the depth of cut were set as the process parameters, and by setting the surface roughness as the factor of measurement for each of the combinations, and the analysis about cutting tendency of the material was conducted by proceeding the turning process of Co-Cr-Mo alloy. Second, by setting the feature of the surface roughness according to the 'turning processing condition' that was confirmed in the previous experiment, and by applying the Taguchi Method, the conditions that influence the features of the surface roughness according to the 'turning processing condition' of Co-Cr-Mo was analyzed, and also by measuring the surface roughness according to each of the 'cutting conditions', the optimal processing condition was generated. As the result of analysis, it was possible to understand that the factor that mostly affects the surface roughness was the cutting speed, followed by the dept of cutting and transfer speed, and as for the optimal processing condition, it was possible to find that the cutting speed was 5,000rpm, and the depth of cut was 0.1mm, and the feedrate was 0.003mm/rev, and the value of the surface roughness at this point is $0.197{\mu}m$.

에어백 인플레이터 캡 성형 공정 개발 및 검증 (Process Design and Experimental Verification of Airbag Inflator Cap Forming)

  • 이득규;이민수;박지우;강범수
    • 소성∙가공
    • /
    • 제27권4호
    • /
    • pp.201-210
    • /
    • 2018
  • An airbag is an essential automotive component used in all kinds of vehicles such as an internal combustion engine and an electric motor vehicle and is used to minimize the damage of an occupant in the event of an accident. Airbag-related parts are being monopolized by a small number of foreign companies around the world. In this situation, it is necessary to develop and research the airbag-related part molding technology for expansion of the domestic airbag-related market and corporate export. As a part of this research, we have developed a mold for airbag inflator cap. The development consists of three steps which are the design of components, analysis of the design and verification of it. In the case of the design, the transfer type mold was designed for the multi-cylindrical shaped feature. Analysis was then conducted on the design. By examining the results of analysis, changing features and numbers of punches and dies were added in the analysis and repeatedly analyzed. After the addition, proper dimensions from the analysis were achieved, and prototypes were practically produced and verified. In the case of prototype verification, Pressurizing Burst Test was conducted on the existing products and the prototype. By comparing the results of the test, the possibility of replacing the existing product of the airbag inflator cap is presented in this paper.