• Title/Summary/Keyword: transepithelial electrical resistance (TEER)

Search Result 14, Processing Time 0.024 seconds

Effect of Korean Red Ginseng on the Stability of the Tight Junction of Intestinal Epithelial Cells (홍삼에 의한 Caco-2 단세포층 간극의 안정화)

  • Shon, Dong-Hwa;Kim, Mi-Hye;Kim, Young-Chan;Kim, Sung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.335-342
    • /
    • 2010
  • Bioactive components involved in the tight junction stabilization of intestinal epithelial cells from Korean red ginseng were studied by analyzing transepithelial electrical resistance (TEER) values of the Caco-2 cell monolayer between the apical and basolateral sides for 96 hr. The treatment with less than $20\;{\mu}g/mL$ of the Korean red ginseng extract to the apical side of Caco-2 cell monolayer gave higher TEER values than the control. However, the treatment with more than $130\;{\mu}g/mL$ of the Korean red ginseng extract drastically decreased the TEER values, and these effects were not due to its cytotoxicity. When fractions of low molecular weight compounds, polysaccharides, proteins, saponins, and polyphenols derived from Korean ginseng were applied to the apical side of the Caco-2 cell monolayer, polyphenols showed high tight junction stabilizing activity and saponins showed low activity, but the others showed no significant activity. These results suggest that Korean red ginseng might be useful for the prevention of food allergy by stabilizing the tight junction of intestinal epithelial cells leading to hindering absorption of food allergens.

Inhibition of Interleukin-1α-induced Intestinal Epithelial Tight Junction Permeability by Curcumin Treatment in Caco-2 Cells in Caco-2 Cells (Caco-2 세포에서 커큐민 처리에 의한 IL-1α로 유도된 소장 상피세포의 tight junction 투과성 저해)

  • Kim, Choon Young
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1082-1087
    • /
    • 2016
  • The intestinal tight junction (TJ) plays an important role as a paracellular barrier. Impaired TJ permeability and enhanced proinflammatory cytokine production are crucial pathophysiological mechanisms in inflammatory bowel diseases (IBDs). Although proinflammatory cytokines, tumor necrosis factor-alpha and interluekin-1 beta, which are markedly increased in IBD patients, have been reported to increase intestinal TJ permeability, the role of interleukin-1 alpha (IL-1α) in the TJ has not been studied. Phytochemicals could prevent proinflammatory cytokine-caused TJ alteration. Curcumin (CCM), a biologically active component of turmeric, has a strong anti-inflammatory activity. The purpose of this study was to elucidate the effect of IL-1α on intestinal epithelial TJ permeability and the role of CCM in IL-1α′s action on TJ in an in vitro intestinal epithelial system, Caco-2 monolayers. The TJ integrity of Caco-2 monolayers was estimated by measuring the flux of FITC-labeled dextran and transepithelial electrical resistance (TEER). Apical IL-1α (100 ng/ml) treatment elevated TJ permeability and suppressed TEER of Caco-2 monolayers. Pretreatment with CCM (20 μM) for 30 min significantly inhibited IL-1α-induced TJ alterations, such as increased TJ permeability and decreased in TEER values. These results demonstrated that IL-1α-induced increases in Caco-2 TJ permeability and CCM blocked the action of IL-1α in the TJ.

Enhancement of Heparin and Heparin Disaccharide Absorption by the Phytolacca americana Saponins

  • Cho, So-Yean;Sim, Joon-Soo;Kang, Sam-Sik;Jeong, Choon-Sik;Linhardt, Robert-J;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1102-1108
    • /
    • 2003
  • We studied the effects of phytolaccosides, saponins from Phytolacca americana, on the intestinal absorption of heparin in vitro and in vivo. The absorption enhancing activity of these compounds (phytolaccosides B, $D_2$, E, F, G and I) was determined by changes in transepithelial electrical resistance (TEER) and the transport amount of heparin disaccharide, the major repeating unit of heparin, across Caco-2 cell monolayers. With the exception of phytolaccoside G, all of them decreased TEER values and increased the permeability in a dose-dependent and time-dependent manner. In vitro, phytolaccosides B,$D_2$, and E showed significant absorption enhancing activities, while effects by phytolaccoside F and I were mild. In vivo, phytolaccoside E increased the activated partial thromboplastin time (APTT) and thrombin time, indicating that phytolaccoside E modulated the transport of heparin in intestinal route. Our results suggest that a series of phytolaccosides from Phytolacca americana can be applied as pharmaceutical excipients to improve the permeability of macromolecules and hydrophilic drugs having difficulty in absorption across the intestinal epithelium.

Enhancement of Paracellular Transport of Heparin Disaccharide Across Caco-2 Cell Monolayers

  • Kim, Yeong-Shik;Cho, So-Yean;Kim, Jong-Sik;Li, Hong;Shim, Chang-Koo;Linhardt, Robert-J.
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.86-92
    • /
    • 2002
  • The enhancement of paracellular transport of heparin disaccharide using several absorption enhancers across Caco-2 cell monolayers was tested . The cytotoxicity of these enhancers was also examined. The enhancing effects by Quillaja saponin, diponin glycyrrhizinate, $18{\beta}-glycyrrhetinic$ acid, sodium caprate and taurine were determined by changes in transepithelial electrical resistance (TEER) and the amount of heparin disaccharide transported across Caco-2 cell monolayers. Among the absorption enhancers, $18{\beta}-glycyrrhetinic$ acid arid taurine decreased TEER and increased the permeability of heparin disaccharide in a dose-dependent and time-dependent manner with little or negligible cytotoxicity. Our results indicate that these absorption enhancers can widen the tight junction, which is a dominant paracellular absorption route of hydrophilic compounds . It is highly possible that these absorption enhancers can be applied as pharmaceutical excipients to improve the transport of macromolecules and hydrophilic drugs having difficulty in permeability across the intestinal epithelium.

Effects of BuOH Extract of the Root of Aralia elata as an Absorption Enhancer on the Transport of Chondroitin Sulfate and Its Digestion Products In Vitro and In Vivo

  • Sim, Joon-Soo;Li, Da-Wei;Cho, Hai-Lim;Cho, So-Yean;Jeong, Choon-Sik;Lee, Eun-Bang;Kim, Yeong-Shik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.415.2-415.2
    • /
    • 2002
  • We investigated the absorption enhancing effect of BuOH extract of the root of Aralia elata (BERAE) in Caco-2 cell monolayers and rats. At the concentration of both 0.04% and 0.08% (w/v). BERAE decreased the transepithelial electrical resistance (TEER) values and increased the permeability of intact chondroitin sulfate (CS) and its digestion products as hydrophilic macromolecules in a dose dependent manner. We also evaluated the cytotoxicity of BERAE for the determination of a proper concentration as an absorption enhancer. (omitted)

  • PDF

Investigation of transport of PEGylated salmon calcitonin through caco-2 cell monolayers

  • Oh, Seung-Huyn;Youn, Yu-Seok;Lee, Jeong-Eun;Park, Yun-Sang;Lee, Kang-Choon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.234.3-235
    • /
    • 2003
  • The aim of this study is to evaluate the permeability of PEG-conjugated salmon calcitonin (sCT) across monolayers of Caco-2 cells that represent a model of the intestinal barrier. Caco-2 cells were grown to confluency on a permeable polycarbonate membrane to permit transport through it. Permeability experiments were performed with native-sCT and PEG-conjugated sCT (PEG M.W. 2000) at various concentrations (5uM, 10uM, 25uM, 50uM, 100uM) in the apical to basolateral direction. The barrier properties were assessed by detecting transport of markder molecules ($^3$H-mannitol) and by measuring transepithelial electrical resistance (TEER). (omitted)

  • PDF

Ultra-Structures And $^{14}C$-Mannitol Transport Study of Human Nasal Epithelial Cells Using ALI Culture Technique (ALI 배양법 이용한 비강 점막 상피세포의 미세구조와 $^{14}C$-mannitol 투과도)

  • Kwak, Kyung-Rok;Hwang, Jee-Yoon;Lee, Ji-Seok;Park, Hye-Kyung;Kim, Yun-Seong;Lee, Min-Ki;Park, Soon-Kew;Kim, Yoo-Sun;Roh, Hwan-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.2
    • /
    • pp.205-212
    • /
    • 2001
  • Background : The information on nasal transport and the metabolism of peptides have been obtained from pharmacokinetic investigations in experimental animals. However, there are no transport and metabolic studies of human nasal epithelial cells. In this study, the permeability characteristics and the metabolic properties of in vitro human nasal cell monolayers were investigated. Material and Methods : Normal human inferior nasal conchal tissue samples were obtained from patients undergoing endoscopic nasal cavitary surgery. The specimens were cultured in a transwell using an air-liquid Interface (ALI) culture, and the transepithelial electrical resistance (TEER) value of the blank filter and confluent cell monolayers were measured. To determine the % leakage of mannitol, $4{\mu}mol%$ $^{14}C$-labelled mannitol was added and the % leakage was measured every 10 minute for 1 hour. Result : Human nasal epithelial cells in the primary culture grew to a confluent monolayer within 7 days and expressed microvilli. The tight junction between the cells was confirmed by transmission electron microscopy. The TEER value of the blank filter, fifth day and seventh day reached $108.5\;ohm.cm^2$, $141\;ohm.cm^2$ and $177.5\;ohm.cm^2$, respectively. Transcellular % leakage of the $^{14}$-mannitol at 10, 20, 30, 40, 50 and 60 minutes was $35.67{\pm}5.43$, $34.42{\pm}5.60$, $32.75{\pm}5.71$, $31.76{\pm}4.22$, $30.96{\pm}3.49$ and $29.60{\pm}3.68\;%$, respectively. Conclusion : The human nasal epithelial monolayer using ALI culture techniques is suitable for a transcellular permeability study. The data suggests that human nasal epithelial cells In an ALI culture technique shows some promise for a nasal transport and metabolism study.

  • PDF

Effects of functional nutrients on chicken intestinal epithelial cells induced with oxidative stress

  • Hyun Woo Kim;Seung Yun Lee;Sun Jin Hur;Dong Yong Kil;Jong Hyuk Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1040-1052
    • /
    • 2023
  • The objective of this study was to investigate the protective effects of functional nutrients including various functional amino acids, vitamins, and minerals on chicken intestinal epithelial cells (cIECs) treated with oxidative stress. The cIECs were isolated from specific pathogen free eggs. Cells were exposed to 0 mM supplement (control), 20 mM threonine (Thr), 0.4 mM tryptophan (Trp), 1 mM glycine (Gly), 10 μM vitamin C (VC), 40 μM vitamin E (VE), 5 μM vitamin A (VA), 34 μM chromium (Cr), 0.42 μM selenium (Se), and 50 μM zinc (Zn) for 24 h with 6 replicates for each treatment. After 24 h, cells were further incubated with fresh culture medium (positive control, PC) or 1 mM H2O2 with different supplements (negative control, NC and each treatment). Oxidative stress was measured by cell proliferation, whereas tight junction barrier function was analyzed by fluorescein isothiocyanate (FITC)-dextran permeability and transepithelial electrical resistance (TEER). Results indicated that cell viability and TEER values were less (p < 0.05) in NC treatments with oxidative stress than in PC treatments. In addition, FITC-dextran values were greater (p < 0.05) in NC treatments with oxidative stress than in PC treatments. The supplementations of Thr, Trp, Gly, VC, and VE in cells treated with H2O2 showed greater (p < 0.05) cell viability than the supplementation of VA, Cr, Se, and Zn. The supplementations of Trp, Gly, VC, and Se in cells treated with H2O2 showed the least (p < 0.05) cellular permeability. In addition, the supplementation of Thr, VE, VA, Cr, and Zn in cells treated with H2O2 decreased (p < 0.05) cellular permeability. At 48 h, the supplementations of Thr, Trp, and Gly in cells treated with H2O2 showed the greatest (p < 0.05) TEER values among all treatments, and the supplementations of VC and VE in cells treated with H2O2 showed greater (p < 0.05) TEER values than the supplementations of VA, Cr, Se, and Zn in cells treated with H2O2. In conclusion, Thr, Trp, Gly, and VC supplements were effective in improving cell viability and intestinal barrier function of cIECs exposed to oxidative stress.

In vitro Study of the Antagonistic Effect of Low-dose Liquiritigenin on Gemcitabine-induced Capillary Leak Syndrome in Pancreatic Adenocarcinoma via Inhibiting ROS-Mediated Signalling Pathways

  • Wu, Wei;Xia, Qing;Luo, Rui-Jie;Lin, Zi-Qi;Xue, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4369-4376
    • /
    • 2015
  • Background: To investigate in-vitro antagonistic effect of low-dose liquiritigenin on gemcitabine-induced capillary leak syndrome (CLS) in pancreatic adenocarcinoma via inhibiting reactive oxygen species (ROS)-mediated signalling pathways. Materials and Methods: Human pancreatic adenocarcinoma Panc-1 cells and human umbilical vein endothelial cells (HUVECs) were pre-treated using low-dose liquiritigenin for 24 h, then added into gemcitabine and incubated for 48 h. Cell viability, apoptosis rate and ROS levels of Panc-1 cells and HUVECs were respectively detected through methylthiazolyldiphenyl-tetrazoliumbromide (MTT) and flow cytometry. For HUVECs, transendothelial electrical resistance (TEER) and transcellular and paracellular leak were measured using transwell assays, then poly (ADP-ribose) polymerase 1 (PARP-1) and metal matrix proteinase-9 (MMP9) activity were assayed via kits, mRNA expressions of p53 and Rac-1 were determined through quantitative polymerase chain reaction (qPCR); The expressions of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and PARP-1 were measured via western blotting. Results: Low-dose liquiritigenin exerted no effect on gemcitabine-induced changes of cell viability, apoptosis rate and ROS levels in Panc-1 cells, but for HUVECs, liquiritigenin ($3{\mu}M$) could remarkably elevate gemcitabine-induced decrease of cell viability, transepithelial electrical resistance (TEER), pro-MMP9 level and expression of ICAM-1 and VCAM-1 (p<0.01). Meanwhile, it could also significantly decrease gemcitabine-induced increase of transcellular and paracellular leak, ROS level, PARP-1 activity, Act-MMP9 level, mRNA expressions of p53 and Rac-1, expression of PARP-1 and apoptosis rate (p<0.01). Conclusions: Low-dose liquiritigenin exerts an antagonistic effect on gemcitabine-induced leak across HUVECs via inhibiting ROS-mediated signalling pathways, but without affecting gemcitabine-induced Panc-1 cell apoptosis. Therefore, low-dose liquiritigenin might be beneficial to prevent the occurrence of gemcitabine-induced CLS in pancreatic adenocarcinoma.

Effect of ginger and cinnamon extract mixtures on the growth of intestinal bacteria and intestinal inflammation (생강계피 복합물이 장내 유익균 증식 및 염증조절 기능에 미치는 영향)

  • Kim, Min Ju;Kim, Min Seo;Kang, Sung Tae;Kim, Ji Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.321-326
    • /
    • 2017
  • We aimed to assess the potential growth-promoting effects of ginger and cinnamon mixtures (GCM) on intestinal bacteria and their anti-inflammatory effects in a cellular model of intestinal inflammation. Bifidobacterium longum, Lactobacillus sp., and Lactobacillus acidophilus served as intestinal bacteria. Further, in the inflammatory co-culture model, Caco-2 cells co-cultured with RAW264.7 cells were treated with GCM before the addition of lipopolysaccharide (LPS) to induce inflammation in RAW264.7 cells. Addition of GCM to modified Eggerth Gagnon media at a ginger:cinnamon ratio of 1:5 increased the growth of B. longum, Lactobacillus sp., and L. acidophilus compared to that of the control. In a cellular model, compared to LPS-treated groups, GCM-treated groups maintained high transepithelial electrical resistance at ginger:cinnamon ratios of 1:1, 1:3, 1:5, and 1:7 and decreased the tight junction permeability at 3:1, 1:1, 1:3, and 1:5 ratios, similar to that shown by the control groups. In addition, GCM-treated groups showed decreased levels of nitrite at 1:1, 1:5, and 1:7 ginger:cinnamon ratios. Based on these results, it can be concluded that among the various combinations of GCM, the ginger:cinnamon ratio of 1:5 is the optimal composite ratio that shows positive effects on the intestinal beneficial bacteria and in anti-inflammation.