• 제목/요약/키워드: transcutaneous gas pressure

검색결과 3건 처리시간 0.018초

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

인삼열매 추출물의 혈행개선과 피부톤 개선에 미치는 영향 (Effect of Ginseng-Berry Extract on the Improvement of Blood Microcirculation and Skin Brightness)

  • 김정기;김병수;박찬웅;서대방;유호룡;이상준
    • 동의생리병리학회지
    • /
    • 제24권1호
    • /
    • pp.85-90
    • /
    • 2010
  • Several studies have demonstrated that ginseng-berry extract has several beneficial properties, including anti-inflammatory, antioxidant, and vasodilation properties. Ginseng-berry extract has also been shown to have the great potential against skin aging. Its beneficial mechanism against skin aging, however, has not been examined in detail. Also, the effects of ginseng-berry extract on microcirculation and skin cellular responses have not been investigated. Inhibition of skin microcirculation is the primary cause of many adverse biological effects, which is responsible for the skin aging and darkening. We investigated the beneficial effects of ginseng-berry extract on blood circulation, transcutaneous oxygen pressure in vivo model and also on skin microcirculation, cellular response and skin brightening effect in clinical trial. We found that oral administration of ginseng-berry extract markedly increased blood flow rate and transcutaneous $O_2$ pressure, but decreased transcutaneous $CO_2$ pressure. Also, it improved skin tone on cheeks, as is skin brighteness. These results suggest that ginseng-berry extract is a potent candidate for the treatment of skin aging and brightening by improving skin microcirculation.

교대부양 설정압력 변화가 인체조직의 동적인 관류특성에 미치는 영향 (The Effects of Alternating Set Pressure Changes on Dynamic Tissue Perfusion Characteristics)

  • 원병희;송창섭
    • 대한인간공학회지
    • /
    • 제29권6호
    • /
    • pp.875-887
    • /
    • 2010
  • The quantitative effectiveness of powered support surfaces such as APAM in preventing and treating pressure ulcers has not been sufficiently evaluated because of uncertainty of alternating pressure load input and lack of interpretation of dynamic perfusion characteristics of soft tissue. The aim was to verify the dynamic loading effects to sacral tissue perfusion characteristics from alternating set pressure changes. We developed integrated experiment system to supply alternating load to supinely positioned sacrum and concurrently measured $TcPO_2$, $TcPCO_2$ and air cell pressure. Ten aged subjects (5 female, 5 male) were tested with alternating set pressure 20, 30, 40, 50 and 60mmHg. From the dynamic perfusion response eight characteristic parameters were proposed such as average, minimum, maximum and perfusion range regarding to $TcPO_2$ and $TcPCO_2$. A one-way ANOVA was carried out to determine whether the manipulation of alternating set pressure had any effect on $TcPO_2$ and $TcPCO_2$. From the dynamic tissue perfusion response we found mean $TcPO_2$ decreased exponentially as alternating pressure load increased and perfusion range varied mainly because of minimum level change of $TcPO_2$. And perfusion range of $TcPCO_2$ affected by increase of maximum value of $TcPCO_2$. From the results we can get more strict insights about actual physiological dynamic tissue perfusion mechanism under alternating pressure load.