• Title/Summary/Keyword: transcriptional regulators

Search Result 97, Processing Time 0.033 seconds

Anti-Adipogenic Activity of Ailanthoidol on 3T3-L1 Adipocytes

  • Park, Ju-Hyung;Jun, Jong-Gab;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • Previous our study demonstrated that ailanthoidol (3-deformylated 2-arylbenzo[b]furan), a neolignan from Zanthoxylum ailanthoides or Salvia miltiorrhiza Bunge, is a novel anti-inflammatory agent. In this investigation, we examined the anti-adipogenic effect of ailanthoidol. Our data showed that ailanthoidol suppressed lipid droplet formation and adipocyte differentiation in 3T3-L1 cells. Treatment of the 3T3-L1 adipocytes with ailanthoidol resulted in an attenuation of the releases of leptin and interleukin-6. The expression of peroxisome proliferator-activated receptor $(PPAR){\gamma}$ and CCAAT/enhancer-binding protein $(C/EBP){\alpha}$, the central transcriptional regulators of adipogenesis, was decreased by treatment with ailanthoidol. Additionally, ailanthoidol treatment increased the phosphorylation levels of 5' adenosine monophosphate-activated protein kinase. These results suggest that ailanthoidol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$ expression. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of ailanthoidol.

miR-27a as an Oncogenic microRNA of Hepatitis B Virus-related Hepatocellular Carcinoma

  • Wu, Xin-Jun;Li, Yan;Liu, Dong;Zhao, Lun-De;Bai, Bin;Xue, Ming-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.885-889
    • /
    • 2013
  • microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through post-transcriptional interactions with mRNA. miRNAs have recently emerged as key regulators of various cancers. Although miR-27a has been implicated in several other cancers, its role in hepatitis B virus-related hepatocellular carcinoma (HCC) is unknown. In this study, we showed miR-27a to be frequently up-regulated in HCC tissues and HCC cell lines (HepG2 and Huh7). Overexpression of miR-27a enhanced cell proliferation, promoted migration and invasion, and activated cell cycling in HepG2 and Huh7 cells. In summary, our results suggest that up-regulation of miR-27a may play an oncogenic role in the development of HCC and might thus be a new therapeutic target in HCC patients.

P22-Based Challenge Phage Constructs to Study Protein-Protein Interactions between the $\sigma$$^{54}$-Dependent Promoter, dctA, and Its Transcriptional Regulators

  • Song, Jeong-Min;Kim, Eungbin;Lee, Joon H.
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.205-210
    • /
    • 2002
  • To study interactions between $C_{4}$-dicarboxylic acid transport protein D and E$\sigma$$^{54}$ in the dctA promoter regulatory region, we used the challenge phage system. An ant'-`lac fusion was recombined onto the challenge phage, and this ant'-`lac fusion along with Pant and the R. meliloti dctA promoter regulatory region were cloned onto a plasmid. The plasmid bearing the ant'-`lac fusion was used as a reporter plasmid in a coupled transcription-translation system. Addition of purified $\sigma$$^{54}$ to the coupled system specifically repressed transcription of the plasmid-borne ant'-`lac fusion. When DCTD was added along with $\sigma$$^{54}$ to the coupled system, transcription of the ant'-`lac fusion was even further repressed, suggesting that DCTD may stabilize closed complexes between E$\sigma$$^{54}$ and the dctA promoter.

Callophyllis japonica extract improves high-fat diet-induced obesity and inhibits adipogenesis in 3T3-L1 cells

  • Kang, Seong-Il;Shin, Hye-Sun;Kim, Hyo-Min;Yoon, Seon-A;Kang, Seung-Woo;Ko, Hee-Chul;Kim, Se-Jae
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.447-454
    • /
    • 2012
  • The anti-obesity potential of an ethanolic extract of the edible red alga Callophyllis japonica extract (CJE) was investigated in mice fed a high-fat diet (HFD). CJE administration into HFD mice revealed suppression of body weight, adipose tissue weight, serum total cholesterol, triglyceride, and glucose levels in a dose-dependent manner. Also, it reduced serum levels of glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and lactate dehydrogenase, as well as the accumulation of fatty droplets in liver tissue. CJE and its ethyl acetate fraction inhibited adipogenesis in 3T3-L1 adipocytes by down-regulating the adipocyte-specific transcriptional regulators. Taken together, these results suggest that CJE reduces obesity in mice fed an HFD by inhibiting lipid accumulation and adipogenesis in the adipose tissues.

In silico analysis of candidate genes involved in light sensing and signal transduction pathways in soybean

  • Quecini, V.;Zucchi, M.I.;Pinheiro, J.B.;Vello, N.A.
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.59-73
    • /
    • 2008
  • Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag (EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis genefamily homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.

march5 Governs the Convergence and Extension Movement for Organization of the Telencephalon and Diencephalon in Zebrafish Embryos

  • Jung, Jangham;Choi, Issac;Ro, Hyunju;Huh, Tae-Lin;Choe, Joonho;Rhee, Myungchull
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.76-85
    • /
    • 2020
  • MARCH5 is a RING finger E3 ligase involved in mitochondrial integrity, cellular protein homeostasis, and the regulation of mitochondrial fusion and fission. To determine the function of MARCH5 during development, we assessed transcript expression in zebrafish embryos. We found that march5 transcripts were of maternal origin and evenly distributed at the 1-cell stage, except for the mid-blastula transition, with expression predominantly in the developing central nervous system at later stages of embryogenesis. Overexpression of march5 impaired convergent extension movement during gastrulation, resulting in reduced patterning along the dorsoventral axis and alterations in the ventral cell types. Overexpression and knockdown of march5 disrupted the organization of the developing telencephalon and diencephalon. Lastly, we found that the transcription of march5 was tightly regulated by the transcriptional regulators CHOP, C/EBPα, Staf, Znf143a, and Znf76. These results demonstrate the essential role of March5 in the development of zebrafish embryos.

Transcription Factor EB-Mediated Lysosomal Function Regulation for Determining Stem Cell Fate under Metabolic Stress

  • Chang Woo Chae;Young Hyun Jung;Ho Jae Han
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.727-735
    • /
    • 2023
  • Stem cells require high amounts of energy to replicate their genome and organelles and differentiate into numerous cell types. Therefore, metabolic stress has a major impact on stem cell fate determination, including self-renewal, quiescence, and differentiation. Lysosomes are catabolic organelles that influence stem cell function and fate by regulating the degradation of intracellular components and maintaining cellular homeostasis in response to metabolic stress. Lysosomal functions altered by metabolic stress are tightly regulated by the transcription factor EB (TFEB) and TFE3, critical regulators of lysosomal gene expression. Therefore, understanding the regulatory mechanism of TFEB-mediated lysosomal function may provide some insight into stem cell fate determination under metabolic stress. In this review, we summarize the molecular mechanism of TFEB/TFE3 in modulating stem cell lysosomal function and then elucidate the role of TFEB/TFE3-mediated transcriptional activity in the determination of stem cell fate under metabolic stress.

Differentially Up-expressed Genes Involved in Toluene Tolerance in Pseudomonas sp. BCNU106 (유기용매 내성 세균 Pseudomonas sp. BCNU106 균주에서 차별적으로 상향 발현되는 유전자군의 톨루엔 내성과의 연관성)

  • Joo, Woo Hong;Bae, Yun-Ui;Kim, Da Som;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • Using a random arbitrarily primed polymerase chain reaction, messenger RNA expression levels were assessed after exposure to 10% (v/v) toluene for 8 hr in solvent-tolerant Pseudomonas sp. BCNU 106. Among the 100 up-expressed products, 50 complementary DNA fragments were confirmed to express repeatedly; these were cloned and then sequenced. Blast analysis revealed that toluene stimulated an adaptive increase in the gene expression level in association with transcriptions such as LysR family of transcriptional regulators and RNA polymerase factor sigma-32. The expression of catalase and Mn2+/Fe2+ transporter genes functionally associated with inorganic ion transport and metabolism increased, and the increased expression of type IV pilus assembly PilZ and multi-sensor signal transduction histidine kinase genes, functionally categorized into signal transduction and mechanisms, was also demonstrated under toluene stress. The gene expression level of beta-hexosaminidase in association with carbohydrate transport and metabolism increased, and those of DNA polymerase III subunit epsilon, DNA-3-methyladenine glycosylase II, DEAD/DEAH box helicase domain-containing protein, and ABC transporter also increased after exposure to toluene in DNA replication, recombination, and repair, and even in defense mechanism. In particular, the RNAs corresponding to the ABC transporter, Mn2+/Fe2+ transporter, and the β-hexosaminidase gene were confirmed to be markedly induced in the presence of 10% toluene. Thus, defense mechanism, cellular ion homeostasis, and biofilm formation were shown as essential for toluene tolerance in Pseudomonas sp. BCNU 106.

Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors (체내 시계 유전자 PER1과 PER2의 종양억제자 기능)

  • Son, Beomseok;Do, Hyunhee;Kim, EunGi;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1225-1231
    • /
    • 2017
  • Disruptive expression patterns of the circadian clock genes are highly associated with many human diseases, including cancer. Cell cycle and proliferation is linked to a circadian rhythm; therefore, abnormal clock gene expression could result in tumorigenesis and malignant development. The molecular network of the circadian clock is based on transcriptional and translational feedback loops orchestrated by a variety of clock activators and clock repressors. The expression of 10~15% of the genome is controlled by the overall balance of circadian oscillation. Among the many clock genes, Period 1 (Per1) and Period 2 (Per2) are clock repressor genes that play an important role in the regulation of normal physiological rhythms. It has been reported that PER1 and PER2 are involved in the expression of cell cycle regulators including cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors. In addition, correlation of the down-regulation of PER1 and PER2 with development of many cancer types has been revealed. In this review, we focused on the molecular function of PER1 and PER2 in the circadian clock network and the transcriptional and translational targets of PER1 and PER2 involved in cell cycle and tumorigenesis. Moreover, we provide information suggesting that PER1 and PER2 could be promising therapeutic targets for cancer therapies and serve as potential prognostic markers for certain types of human cancers.

Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum (Corynebacterium glutamicum의 탄소대사 및 총체적 탄소대사 조절)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.349-361
    • /
    • 2010
  • In this review, the current knowledge of the carbon metabolism and global carbon regulation in Corynebacterium glutamicum are summarized. C. gluamicum has phosphotransferase system (PTS) for the utilization of sucrose, glucose, and fructose. C. glutamicum does not show any preference for glucose when various sugars or organic acids are present with glucose, and thus cometabolizes glucose with other sugars or organic acids. The molecular mechanism of global carbon regulation such as carbon catabolite repression (CCR) in C. glutamicum is quite different to that in Gram-negative or low-GC Gram-positive bacteria. GlxR (glyoxylate bypass regulator) in C. glutamicum is the cyclic AMP receptor protein (CRP) homologue of E. coli. GlxR has been reported to regulate genes involved in not only glyoxylate bypass, but also central carbon metabolism and CCR including glycolysis, gluconeogenesis, and tricarboxylic acid (TCA) cycle. Therefore, GlxR has been suggested as a global transcriptional regulator for the regulation of diverse physiological processes as well as carbon metabolism. Adenylate cyclase of C. glutamicum is a membrane protein belonging to class III adenylate cyclases, thus it could possibly be a sensor for some external signal, thereby modulating cAMP level in response to environmental stimuli. In addition to GlxR, three additional transcriptional regulators like RamB, RamA, and SugR are also involved in regulating the expression of many genes of carbon metabolism. Finally, recent approaches for constructing new pathways for the utilization of new carbon sources, and strategies for enhancing amino acid production through genetic modification of carbon metabolism or regulatory network are described.