• Title/Summary/Keyword: transcriptional change

Search Result 78, Processing Time 0.024 seconds

C-reactive protein accelerates DRP1-mediated mitochondrial fission by modulating ERK1/2-YAP signaling in cardiomyocytes

  • Suyeon Jin;Chan Joo Lee;Gibbeum Lim;Sungha Park;Sang-Hak Lee;Ji Hyung Chung;Jaewon Oh;Seok-Min Kang
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.663-668
    • /
    • 2023
  • C-reactive protein (CRP) is an inflammatory marker and risk factor for atherosclerosis and cardiovascular diseases. However, the mechanism through which CRP induces myocardial damage remains unclear. This study aimed to determine how CRP damages cardiomyocytes via the change of mitochondrial dynamics and whether survivin, an anti-apoptotic protein, exerts a cardioprotective effect in this process. We treated H9c2 cardiomyocytes with CRP and found increased intracellular ROS production and shortened mitochondrial length. CRP treatment phosphorylated ERK1/2 and promoted increased expression, phosphorylation, and translocation of DRP1, a mitochondrial fission-related protein, from the cytoplasm to the mitochondria. The expression of mitophagy proteins PINK1 and PARK2 was also increased by CRP. YAP, a transcriptional regulator of PINK1 and PARK2, was also increased by CRP. Knockdown of YAP prevented CRP-induced increases in DRP1, PINK1, and PARK2. Furthermore, CRP-induced changes in the expression of DRP1 and increases in YAP, PINK1, and PARK2 were inhibited by ERK1/2 inhibition, suggesting that ERK1/2 signaling is involved in CRP-induced mitochondrial fission. We treated H9c2 cardiomyocytes with a recombinant TAT-survivin protein before CRP treatment, which reduced CRP-induced ROS accumulation and reduced mitochondrial fission. CRP-induced activation of ERK1/2 and increases in the expression and activity of YAP and its downstream mitochondrial proteins were inhibited by TAT-survivin. This study shows that mitochondrial fission occurs during CRP-induced cardiomyocyte damage and that the ERK1/2-YAP axis is involved in this process, and identifies that survivin alters these mechanisms to prevent CRP-induced mitochondrial damage.

Effects of High Glucose and Advanced Glycosylation Endproducts (AGE) on ZO-1 Expression in cultured Glomerular Epithelial Cells (GEpC) (당과 후기당화합물에 의한 사구체 상피세포 ZO-1 발현의 변화)

  • Lee Jin-Seok;Lee Hae- Soo;Yoon Ok-Ja;Ha Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.8 no.2
    • /
    • pp.138-148
    • /
    • 2004
  • Purpose: Regardless of the underlying diseases, the proteinuric condition demonstrates ultrastructural changes in podocytes with retraction and effacement of the highly specialized interdigitating foot processes. We examined the molecular basis for this alteration of the podocyte phenotypes, including quantitative and distributional changes of ZO-1 protein as a candidate contributing to the pathogenic changes in the barrier to protein filtration. Methods: To investigate whether high glucose and advanced glycosylation endproduct(AGE) induce podocyte cytoskeletal changes, we cultured rat GEpC under 1) normal glucose(5 mM=control) or 2) high glucose(30 mM) or 3) AGE-added or 4) high glucose plus AGE-added conditions. The distribution of ZO-1 was observed by confocal microscope and the change of ZO-1 expression was measured by Western blotting and RT-PCR. Results: By confocal microscopy, we observed that ZO-1 moves from peripheral cytoplasm to inner actin filaments complexes in both AGE-added and high glucose condition. In Western blotting, high glucose or AGE-added condition decreased the ZO-1 protein expression by 11.1%(P>0.05) and 2.3%(P>0.05), respectively compared to the normal glucose condition. High glucose plus AGE-added condition further decreased ZO-1 protein expression to statistically significant level(12%, P<0.05). No significant change was seen in the osmotic control. In RT-PCR, high glucose plus AGE-added condition significantly decreased the expression of ZO-1 mRNA by 12% compared to normal glucose condition. Conclusion: We suggest that both high glucose and AGE-added condition induce the cytoplasmic translocation and suppresses the production of ZO-1 at transcriptional level and these changes may explain the functional changes of podocytes in diabetic conditions.

  • PDF

Activation of the NF-$\kappa$B p50/p65 Complex in Human Lung Cancer Cell Lines (인체 폐암세포주에서 NF-$\kappa$B p50/p65 Complex의 활성화)

  • Choi, Hyung-Seok;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.185-194
    • /
    • 1999
  • Background: NF-$\kappa$B is a characteristic transcriptional factor whose functional activity is determined by post-translational modification of protein and subsequent change of subcellular localization. The involvement of the NF-$\kappa$B family of the transcription factors in the control of such vital cellular functions as immune response, acute phase reaction, replication of certain viruses and development and differentiation of cells has been clearly documented in many previous studies. Several recent observations have suggested that the NF-$\kappa$B might also be involved in the carcinogenesis of some hematological and solid tumors. Investigating the possibility that members of the NF-$\kappa$B family participate in the molecular control of malignant cell transformation could provide invaluable information on both molecular pathogenesis and cancer-related gene therapy. Method: To determine the expression patterns and functional roles of NF-$\kappa$B family transcription factors in human lung cancer cell lines NCI-H792, NCI-H709, NCI-H226 and NCI-H157 were analysed by western blot, using their respective antibodies. The nuclear and the cytoplasmic fraction of protein extract of these cell lines were subsequently obtained and NF-$\kappa$B expression in each fraction was again determined by western blot analysis. The type of NF-$\kappa$B complex present in the cells was determined by immunoprecipitation. To detect the binding ability of cell-line nuclear extracts to the KB consensus oligonucleotide, electrophoretic mobility shift assay(EMSA) was performed. Results: In the cultured human lung cancer cell lines tested, transcription factors of the NF-$\kappa$B family, namely the p50 and p65 subunit were expressed and localized in the nuclear fraction of the cellular extract by western blot analysis and immunocytochemistry. Immunoprecipitation assay showed that in the cell, the p50 and p65 subunits made NF-$\kappa$B complex. Finally it was shown by Electrophoretic Mobility Shift Assay(EMSA) that nuclear extracts of lung cancer cell lines are able to bind to NF-$\kappa$B consensus DNA sequences. Conclusion: These data suggest that in human lung cancer cell lines the NF-$\kappa$B p50/p65 complex might be activated. and strengthen the hypothesis that NF-$\kappa$B family transcription factors might be involved in the carcinogenesis of human lung cancer.

  • PDF

Identification of Interleukin 1-Responsive Genes in Human Chondrosarcoma SW1354 cells by cDNA Microarray Technology

  • Jeon, Jun-Ha;Jung, Yong-Wook;Yun, Dae-Young;Kim, Hyun-Do;Kwon, Chang-Mo;Hong, Young-Hoon;Kim, Jae-Ryong;Lee, Choong-Ki
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.1
    • /
    • pp.24-40
    • /
    • 2007
  • Background : Accumulating evidence shows that interleukin(IL)-1 plays a critical role in inflammation and connective tissue destruction observed in both osteoarthritis and rheumatoid arthritis. IL-1 induces gene expression related to cytokines, chemokines and matrix metalloproteinases by activation of many different transcription factors. Materials and Methods : The chondrosarcoma cell line, SW1353, is known to be a valuable in vitro system for investigating catabolic gene regulation by IL-$1{\beta}$ in chondrocytic cells. To explore and analyze the changes in gene expression by IL-1 responsible for arthritis, SW1353 was treated with IL-1 for 1, 6 and 24 h and then total RNAs were purified for each time. The changes in gene expression were analyzed with 17k human cDNA microarrays and validated by semi-quantitative RT-PCR. Results : Greater than a two-fold change was observed in 1,200 genes including metallothioneins, matrix metalloproteinases, extracellular matrix proteins, antioxidant proteins, cytoskeleton proteins, cell cycle regulatory proteins, proteins for cell growth and apoptosis, signaling proteins and transcription factors. These changes appeared to be correlate with the pathophysiological changes observed in early osteoarthritis. Conclusion : cDNA microarray analysis revealed a marked variability in gene expression, and provided insight into the overall molecular changes. The result of this study provide initial information for further studies to identify therapeutic targets in osteoarthritis pathogenesis.

  • PDF

STUDY ON MUTATION OF P53 AND EXPRESSION OF MDM-2 IN DMBA INDUCED CARCINOMA OF HAMSTER BUCCAL POUCH (DMBA로 유도된 햄스터 협낭암종에서 p53 유전자 변이와 mdm-2 단백의 발현에 관한 연구)

  • Park, Yong-Sun;Kim, Kyung-Wook;Lee, Jae-Hoon;Kim, Chang-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.5
    • /
    • pp.373-384
    • /
    • 2001
  • Cellular proliferation is an intricately regulated process mediated by the coordinated interactions of critical growth control genes. Two of these factors in mammalian cells are the p53 and mdm-2 genes. A protein product of the mem-2 oncogene has been recently shown to associate with the protein encoded by the tumor suppressor gene p53. The p53 tumor suppressor protein is stabilized in response to DNA damage and other stress signals and causes the cell to undergo growth arrest or apoptosis, thus preventing the establishment of mutations in future cellular generations. Mutation or loss of p53 is a very common event in tumor progression. It occurs in about 50% of all tumors analysed including of colon, lung, breast and liver. The cellular mdm-2 gene, which has potential transforming activity that can be activated by overexpression, is amplified in a significant percentage of human sarcoma and in other mammalian tumors. Proteins encoded by the mdm-2 gene are able to bind to the p53 protein and, when overexpressed, can inhibit p53's transcriptional activation function, thus mdm-2 can act as a negative regulator of p53 function. Experimental study was performed to observe the relationship between p53 gene mutation and mdm-2 protein expression and apply the results to the clinical activity. 36 golden syrian hamster each weighing $60{\sim}80g$ were used and painted with 0.5% DMBA by 3 times weekly on the right buccal cheek(experimental side) for 6, 8, 10, 12, 14 and 16 weeks. Left buccal cheek(control side) was treated with mineral oil as the same manner to the right side. The hamsters were sacrificed on the 6, 8, 10, 12, 14 & 16 weeks. Normal and tumor tissues from paraffin block were examined for histology and immunohistochemistry observation, and were completely dissected by microdissection and DNA from both tissue were isolated by proteins K/phenol/chloroform extraction. Segments of the hamster p53 exons 5, 6, 7 and 8 were amplified by PCR using the oligonucleotide primers, and then confirmational change was observed by SSCP respectively. The results were as follows : 1. Dysplasia at 6 weeks, carcinoma in situ at 8 weeks and invasive carcinoma from 10 weeks could be observed in experimental groups. 2. p53 mutations were detected in 10 of the 36(28%) and the exons 6(6 of the 10 : 60%) was the most hot spot area among the highy conserved region(exons 5, 6, 7 & 8). 3. Immunohistochemical study confirmed 22 of the 36(61%) of p53 expression involving 10 of p53 mutations. 4. mdm-2 expression of was showed in 3 of the 36(8%) involving 1 of the 22 of p53 expression and 2 of the 14 of p53 non-expression. From the above results, mutation of p53 gene or expression of p53 protein may have the influence of the DMBA induced carcinoma of hamster buccal pouch but the expression of mdm-2 protein may not have relationship with tumorigenesis.

  • PDF

The Effect of Inhibition of Heme Oxygenase-1 on Chemosensitivity of Cisplatin in Lung Cancer Cells (폐암세포주에서 Heme Oxygenase-1의 억제가 Cisplatin의 항암제 감수성에 미치는 영향)

  • Kim, So-Young;Kim, Eun-Jung;Jang, Hye-Yeon;Hwang, Ki-Eun;Park, Jung-Hyun;Kim, Hwi-Jung;Jo, Hyang-Jeong;Yang, Sei-Hoon;Jeong, Eun-Taik;Kim, Hak-Ryul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • Background: Heme oxygenase-1 (HO-1) is known to modulates the cellular functions, including cell proliferation and apoptosis. It is known that a high level of HO-1 expression is found in many tumors, and HO-1 plays an important role in rapid tumor growth on account of its antioxidant and antiapoptotic effects. Cisplatin is a widely used anti-cancer agent for the treatment of lung cancer. However, the development of resistance to cisplatin is a major obstacle to its use in clinical treatment. We previously demonstrated that inhibiting HO-1 expression through the transcriptional activation of Nrf2 induces apoptosis in A549 cells. The aim of this study was to determine of the inhibiting HO-1 enhance the chemosensitivity of A549 cells to cisplatin. Materials and Methods: The human lung cancer cell line, A549, was treated cisplatin, and the cell viability was measured by a MTT assay. The change in HO-1, Nrf2, and MAPK expression after the cisplatin treatment was examined by Western blotting. HO-1 inhibition was suppressed by ZnPP, which is a specific pharmacologic inhibitor of HO activity, and small interfering RNA (siRNA). Flow cytometry analysis and Western blot were performed in to determine the level of apoptosis. The level of hydrogen peroxide ($H_2O_2$) generation was monitored fluoimetrically using 2',7'-dichlorofluorescein diacetate. Results: The A549 cells showed more resistance to the cisplatin treatment than the other cell lines examined, whereas cisplatin increased the expression of HO-1 and Nrf2, as well as the phosphorylation of MAPK in a time-dependent fashion. Inhibitors of the MAPK pathway blocked the induction of HO-1 and Nrf2 by the cisplatin treatment in A549 cells. In addition, the cisplatin-treated A549 cells transfected with dither the HO-1 small interfering RNA (siRNA) or ZnPP, specific HO-1 inhibitor, showed in a more significantly decrease in viability than the cisplatin-only-treated group. The combination treatment of ZnPP and cisplatin caused in a marked increase in the ROS generation and a decrease in the HO-1 expression. Conclusion: Cisplatin increases the expression of HO-1, probably through the MAPK-Nrf2 pathway, and the inhibition of HO-1 enhances the chemosensitivity of A549 cells to cisplatin.

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Apoptosis in the Rat Epididymis (흰쥐 부정소에서의 세포자연사에 미치는 Ethane 1,2-Dimethane Sulfonate(EDS)의 효과)

  • Son, Hyeok-Jun;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2006
  • Ethane 1,2-Dimethane sulfonate(EDS), a toxin which specifically kills Leydig cells(LC), has been widely used to prepare the reversible testosterone(T) depletion rat model. Previous studies including our own clearly demonstrated that the dramatic weight loss of the T-dependent accessory sex organs such as epididymis and seminal vesicle in this 'LC knock-out' rats. These weight loss could be derived from massive and abrupt death of the cells via apoptotic process. The present study was performed to test the effect of EDS administration on the expression of some apoptotic genes in the rat epididymis. Adult male Sprague-Dawley rats($300{\sim}350$ g B.W.) were injected with single dose of EDS(75 mg/kg, i.p.) and sacrificed on Weeks 0, 1, 2, 3, 4, 5, 6 and 7. Tissue weights and the numbers of the epididymal sperm were measured. The transcriptional activities of the bcl-2, bax, Fas and Fas ligand(Fas-L) were evaluated by semi-quantitative RT-PCR. As expected, the weights and the sperm counts of epididymis declined progressively after the EDS treatment during Week 1 and 2. These decrements were discontinued with a gradual return towards normal during Weeks $5{\sim}7$, although the maximal recoveries of the epididymal weights(71%) and sperm count(38%) were subnormal on Week 7. The initial level of bcl-2 transcripts persisted to Week 6 then elevated significantly on Week 7. The level of bax transcripts significantly decreased on Week 6, and no remarkable change was found in the rest of the experimental period. The transcripts for the Fas in epididymis elevated during Weeks $1{\sim}2$, returned to normal on Week 3, and the level persisted to the Week 7. Similarly, the level of Fas-L transcripts elevated during Weeks $1{\sim}3$ and returned to normal after Week 4. Our results demonstrated the transient T depletion by EDS administration could induce the changes in expression of the apoptotic genes in rat epididymis. The activation of Fas and Fas-L in the epididymis of EDS-treated rats might be responsible for the initial apototic process and consequently the tissue damage and the sperm loss. Future studies will attempt to determine the precise molecular mechanism(s) of apoptosis in the rat epididymis.

  • PDF

Effect of Prepubertal Exposure to Di(2-ethylhexyl)phthalate on the Maturation of Rat Seminal Vesicles and Prostate Glands (사춘기 전 수컷 흰쥐의 저정낭과 전립선의 성숙에 미치는 Di(2-ethylhexyl) phthalate(DEHP)의 영향)

  • Heo, Hyun-Jin;Lee, Won-Yong;Yoon, Yong-Dal;Choi, Donchan;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.251-259
    • /
    • 2008
  • The plasticizer di(2-ethylhexyl)phthalate(DEHP) is one of the most well known endocrine disrupting chemicals (EDCs) because of its strong anti-androgenic effects on the reproductive and developmental process in male rodents and human. The present study was performed to examine whether prepubertal exposure to DEHP can make any alteration during the maturation of accessory sex organs in male rats. As a result, there was no significant change in body weights, serum T levels and tissue weights except of seminal vesicle and ventral prostate in DEHP-treated animals compared to vehicle-treated ones. The seminal vesicle weights in high-dose group (200 mg/kg) were significantly lower than those from the control group (p<0.05), and ventral prostate weights were significantly lower than those from the control group (p<0.05) in both low-dose (20 mg/kg) and high-dose group. Histological studies revealed that the seminal vesicles from DEHP-treated groups showed reduced areas of mucosal folds. Pseudostratified columnar epithelia were observed in the ventral prostates of DEHP-treated samples while cuboidal epithelia were found in the control group. The transcriptional activities of ER-$\alpha$ in seminal vesicle from high-dose group (p<0.05) were significantly higher than those from the control group, and ER-$\beta$ expression was significantly decreased in low-dose group (p<0.05) compared to the control. In ventral prostate, ER-$\beta$ mRNA levels from low-dose group (p<0.05) were significantly lower than those from the control group, and significantly increased in high-dose group (p<0.01). AR expressions, however, were not significantly different in all experimental groups of both seminal vesicle and ventral prostate. In conclusion, the present study demonstrated that (i) adverse effect (s) of DEHP on sexual maturation during prepubertal period could be limited, (ii) seminal vesicle and prostate gland were sensitive targets to DEHP in prepubertal rats and (iii) the deleterious effects of DEHP might be mediated through ER-associated mechanism.

  • PDF