• Title/Summary/Keyword: transcript profiling

Search Result 21, Processing Time 0.028 seconds

Transcript Profiling of Toll-Like Receptor mRNAs in Selected Tissues of Mink (Neovison vison)

  • Tong, Mingwei;Yi, Li;Cheng, Yuening;Zhang, Miao;Cao, Zhigang;Wang, Jianke;Zhao, Hang;Lin, Peng;Yang, Yong;Cheng, Shipeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2214-2223
    • /
    • 2016
  • Toll-like receptors (TLRs) can recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses against invading infectious agents. The aim of this study was to assess the transcript profile of mink TLRs (mTLRs) in mink peripheral blood mononuclear cells (PBMCs) and a range of tissues, and to explore the potential role of mTLRs in the antiviral immune response process. The results indicated that the mTLR partial nucleotide sequences had a high degree of nucleotide identity with ferret sequences (95-98%). Phylogenetic analysis showed that mammalian TLRs grouped into five TLR families, with a closer relationship of the mTLRs with those of ferret than the other mammalian sequences. Moreover, all the mTLRs were ubiquitously expressed in lymphoid organs (spleen and lymph nodes) and PBMCs. Interestingly, the mTLR expression patterns in lung, uterus, and heart showed quite a lot of similarity. Another remarkable observation was the wide expression of mTLR1-3 mRNAs in all tissues. Among the analyzed tissues, skeletal muscle was revealed to being the lowest repertoire of mTLR expression. Additionally, mink PBMCs exposed to the canine distemper virus revealed significant upregulation of mTLR2, mTLR4, mTLR7, and mTLR8 mRNAs, indicating that mTLRs have a role in innate immunity in the mink. Collectively, our results are the first to establish the basic expression patterns of mTLRs and the relationship between mTLRs and a virus, which will contribute to better understanding of the evolution and the functions of mTLRs in the innate immune system in minks.

Gene Expression Profiling in Rice Infected with Rice Blast Fungus using SAGE

  • Kim, Sang-Gon;Kim, Sun-Tae;Kim, Sung-Kun;Kang, Kyu-Young
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.384-391
    • /
    • 2008
  • Rice blast disease, caused by the pathogenic fungus Magnaporthe grisea, is a serious issue in rice (Oryza sativa L.) growing regions of the world. Transcript profiling in rice inoculated with the fungus has been investigated using the transcriptomics technology, serial analysis of gene expression (SAGE). Short sequence tags containing sufficient information which are ten base-pairs representing the unique transcripts were identified by SAGE technology. We identified a total of 910 tag sequences via the GenBank database, and the resulting genes were shown to be up-regulated in all functional categories under the fungal biotic stress. Compared to the compatible interaction, the stress and defense genes in the incompatible interaction appear to be more up-regulated. Particularly, thaumatin-like gene (TLP) was investigated in determining the gene and protein expression level utilizing Northern and Western blotting analyses, resulting in an increase in both the gene and the protein expression level which arose earlier in the incompatible interaction than in the compatible interaction.

Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies

  • Yeh, Hsin-Sung;Zhang, Wei;Yong, Jeongsik
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.201-207
    • /
    • 2017
  • Alternations in usage of polyadenylation sites during transcription termination yield transcript isoforms from a gene. Recent findings of transcriptome-wide alternative polyadenylation (APA) as a molecular response to changes in biology position APA not only as a molecular event of early transcriptional termination but also as a cellular regulatory step affecting various biological pathways. With the development of high-throughput profiling technologies at a single nucleotide level and their applications targeted to the 3'-end of mRNAs, dynamics in the landscape of mRNA 3'-end is measureable at a global scale. In this review, methods and technologies that have been adopted to study APA events are discussed. In addition, various bioinformatics algorithms for APA isoform analysis using publicly available RNA-seq datasets are introduced.

Development and Validation of the Custom Human cDNA Microarray (KISTCHIP-400) for Monitoring Expression of Genes involved in Hormone Disruption

  • Kim, Youn-Jung;Yun, Hye-Jung;Chang, Suk-Tai;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.189.1-189.1
    • /
    • 2003
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity. (omitted)

  • PDF

Monitoring of Chicken RNA Integrity as a Function of Prolonged Postmortem Duration

  • Malila, Yuwares;Srimarut, Yanee;U-chupaj, Juthawut;Strasburg, Gale;Visessanguan, Wonnop
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1649-1656
    • /
    • 2015
  • Gene expression profiling has offered new insights into postmortem molecular changes associated with meat quality. To acquire reliable transcript quantification, high quality RNA is required. The objective of this study was to analyze integrity of RNA isolated from chicken skeletal muscle (pectoralis major) and its capability of serving as the template in quantitative real-time polymerase chain reaction (qPCR) as a function of postmortem intervals representing the end-points of evisceration, carcass chilling and aging stages in chicken abattoirs. Chicken breast muscle was dissected from the carcasses (n = 6) immediately after evisceration, and one-third of each sample was instantly snap-frozen and labeled as 20 min postmortem. The remaining muscle was stored on ice until the next rounds of sample collection (1.5 h and 6 h postmortem). The delayed postmortem duration did not significantly affect $A_{260}/A_{280}$ and $A_{260}/A_{230}$ ($p{\geq}0.05$), suggesting no altered purity of total RNA. Apart from a slight decrease in the 28s:18s ribosomal RNA ratio in 1.5 h samples (p<0.05), the value was not statistically different between 20 min and 6 h samples ($p{\geq}0.05$), indicating intact total RNA up to 6 h. Abundance of reference genes encoding beta-actin (ACTB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), hypoxanthine-guanine phosphoribosyltransferase (HPRT), peptidylprolylisomerase A (PPIA) and TATA box-binding protein (TBP) as well as meat-quality associated genes (insulin-like growth factor 1 (IGF1), pyruvate dehydrogenase kinase isozyme 4 (PDK4), and peroxisome proliferator-activated receptor delta (PPARD) were investigated using qPCR. Transcript abundances of ACTB, GAPDH, HPRT, and PPIA were significantly different among all postmortem time points (p<0.05). Transcript levels of PDK4 and PPARD were significantly reduced in the 6 h samples (p<0.05). The findings suggest an adverse effect of a prolonged postmortem duration on reliability of transcript quantification in chicken skeletal muscle. For the best RNA quality, chicken skeletal muscle should be immediately collected after evisceration or within 20 min postmortem, and rapidly preserved by deep freezing.

Fabrication of a Partial Genome Microarray of the Methylotrophic Yeast Hansenula polymorpha: Optimization and Evaluation of Transcript Profiling

  • OH , KWAN-SEOK;KWON, OH-SUK;OH, YUN-WI;SOHN, MIN-JEONG;JUNG, SOON-GEE;KIM, YONG-KYUNG;KIM, MIN-GON;RHEE, SANG-KI;GERD GELLISSEN,;KANG, HYUN-AH
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1239-1248
    • /
    • 2004
  • The methylotrophic yeast Hansenula polymorpha has been extensively studied as a model organism for methanol metabolism and peroxisome biogenesis. Recently, this yeast has also attracted attention as a promising host organism for recombinant protein production. Here, we describe the fabrication and evaluation of a DNA chip spotted with 382 open reading frames (ORFs) of H. polymorpha. Each ORF was PCR-amplified using gene-specific primer sets, of which the forward primers had 5'-aminolink. The PCR products were printed in duplicate onto the aldehyde-coated slide glasses to link only the coding strands to the surface of the slide via covalent coupling between amine and aldehyde groups. With the partial genome DNA chip, we compared efficiency of direct and indirect cDNA target labeling methods, and found that the indirect method, using fluorescent-labeled dendrimers, generated a higher hybridization signal-to-noise ratio than the direct method, using cDNA targets labeled by incorporation of fluorescence-labeled nucIeotides during reverse transcription. In addition, to assess the quality of this DNA chip, we analyzed the expression profiles of H. polymorpha cells grown on different carbon sources, such as glucose and methanol, and also those of cells treated with the superoxide­generating drug, menadione. The profiles obtained showed a high-level induction of a set of ORFs involved in methanol metabolism and oxidative stress response in the presence of methanol and menadione, respectively. The results demonstrate the sensitivity and reliability of our arrays to analyze global gene expression changes of H. polymorpha under defined environmental conditions.

Transcript profiling of expressed sequence tags from intramuscular fat, longissimus dorsi muscle and liver in Korean cattle (Hanwoo)

  • Lim, Da-Jeong;Lee, Seung-Hwan;Cho, Yong-Min;Yoon, Du-Hak;Shin, Youn-Hee;Kim, Kyu-Won;Park, Hye-Sun;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • A large data set of Hanwoo (Korean cattle) ESTs was analyzed to obtain differential gene expression results for the following three libraries: intramuscular fat, longissimus dorsi muscle and liver. To better understand the gene expression profiles, we identified differentially expressed genes (DEGs) via digital gene expression analysis. Hierarchical clustering of genes was performed according to their relative abundance within the six separate groups (Hanwoo fat versus non-Hanwoo fat, Hanwoo muscle versus non-Hanwoo muscle and Hanwoo liver versus non-Hanwoo liver), producing detailed patterns of gene expression. We determined the quantitative traits associated with the highly expressed genes. We also provide the first list of putative regulatory elements associated with differential tissue expression in Hanwoo cattle. In addition, we conducted evolutionary analysis that suggests a subset of genes accelerated in the bovine lineage are strongly correlated with their expression in Hanwoo muscle.

Expressional Profiling of Telomerase and Telomere-Associated Molecules in the Rat Testis and Seminal Vesicle during Postnatal Developmental Period

  • Seo, Hee-Jung;Lee, Seong-Kyu;Baik, Haing-Woon;Cheon, Yong-Pil;Chun, Tae-Hoon;Choi, In-Ho;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.195-202
    • /
    • 2011
  • Maintenance of adequate telomere length in developing cells is the most important concern to preserve the integrity of the genome. The length of telomere is strictly regulated by numerous telomere-binding proteins and/or interacting factors. Even though the expression of telomerase in the male reproductive tract has been characterized, developmental expressional profiling of telomerase and other telomere-associated proteins has not been determined in detail. The present study was attempted to examine expression patterns of catalytic subunit (Tert) and RNA component (Terc) of telomerase and two telomerase associated factors, telomerase associated protein 1 (Tep1) and TERF1 (TRF1) interacting nuclear factor 2 (Tinf2) in the testis and seminal vesicle of male rat during postnatal development. The real-time PCR analysis was utilized to quantify mRNA expression of molecules. The abundance of Tep1 mRNA in the testis and seminal vesicle was the highest at 5 months of age. Expressional fluctuation of Tinf2 during postnatal development was found in the testis, while expression of Tinf2 in the seminal vesicle was gradually increased until 5 months of age and then significantly decreased later. mRNA level of Tert gene in the testis was significantly increased at the adult and the elder, while the highest expression of Tert gene in the seminal vesicle was found at 5 months of age. Expression of Terc transcript in the testis and seminal vesicle was the highest at 5 months of age, followed by significant reduction at 1 and 2 years of ages. Such differential gene expression of telomere-associated factors and telomerase components in different male reproductive tissues during postnatal development indicates that maintenance of telomere length would be regulated in tissue- and/or age-specific manners.

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

Development and Validation of the Custom Human cDNA Microarray (KISTCHIP-400) for Monitoring Expression of Genes involved in Hormone Disruption

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.180-180
    • /
    • 2003
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an increased awareness of endocrine disrupting chemicals (EBCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity. Here we developed an in-house cDNA microarray, named KISTCHIP-400, with 401 clones, hormone related genes, factors, and ESTs, based on public database and research papers. Theses clones contained estrogen, androgen, thyroid hormone St receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. And to validate the KISTCHIP-400, we investigated gene expression profiles with reference hormones, 10$\^$-8/ M 17be1a-estradiol, 10$\^$-7/ M testosterone, 10$\^$-7/ M progesterone, and thyroxin in MCF-7 cell line. Although it is in first step of validation, low doses and combinations of EDCs need to be tested. Our preliminary results that indicate the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

  • PDF