• Title/Summary/Keyword: trans-galactosylation

Search Result 2, Processing Time 0.017 seconds

Production of Sialytrisaccharides Using $\beta$-Galactosidase and trans-Sialidase in One Pot

  • Lee, Sun-Gu;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.215-218
    • /
    • 2000
  • Sialytrisaccharides based on $\beta$-galactosyldisaccharides were synthesized using $\beta$-galactosidase and trans-sialidase in one pot. Using $\beta$-galactosidase from Bacillus Ciculans and trans-sialidase from Trypanosoma cruzi simulaneously, 6mM sialyltrisaccharides composed of about 95% NeuAc$\alpha$(2,3)Gal$\beta$(1,4)GlcNAc and 5% NeuAc$\alpha$(2,3)Gal$\beta$(1,6)GlcNAc were produced from a reaction mixture containing 25mM o-nitropheny1-$\beta$-D-galsctolneuraminic acid. One beauty of this reaction was that a secondary hydrolysis of the disaccharide intermediate occurring between the activated galactopyranoside and N-acetylgucosamine was prevented. Using $\beta$-galactosidase from Escherichia cloi and the same trans-sialidase, 15mM sialyltrisaccharides composed of about 90% NeuAc$\alpha$(2,3)Gal$\beta$(1,6)GlcNac and 10% NeuAc$\alpha$(2,3)Gal$\beta$(1,4)GlcNAc were produced from a reaction misture containing 400nM galactose, 800nM N-acetylglucosylation rection between galactose and N-actylgucosamine was diminant since the disaccharide intermediate mainly resulted sreulted in the silylated product.

  • PDF

Research Trend of Lactulose Production from Lactose (젖당(Lactose)으로부터 락툴로오스(Lactulose) 생산을 위한 연구 동향)

  • Lee, Ja Hyun;Yoo, Hah Young;Jung, Da Un;Park, Charnho;Song, Yoon Seok;Park, Chulhwan;Kim, Seung Wook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.407-412
    • /
    • 2014
  • Lactulose is well known for functional component in the food and pharmaceutical field and utilized in a wide variety of foods as a bifidus factor or functional ingredient for intestinal regulation. Lactulose synthesis can be classified into chemical and biological methods. In chemical methods, lactulose is synthesized by alkaline isomerization, but it has many disadvantages such as including product purification, lactulose degradation, side reactions and waste management. Therefore, the enzymatic synthesis methods were recently studied to solve these problems. ${\beta}$-galactosidase is a important enzyme in the dairy industry, because of the production of lactose-hydrolyzed products. Also, ${\beta}$-galactosidases can be utilized to synthesize lactulose from lactose by a trans-galactosylation reaction, using fructose as a galactosyl acceptor. However, the synthesis of lactulose from lactose is economically not suitable due to high levels of lactose price. This review summarizes the current state of lactulose production by chemical and biological processes.