• Title/Summary/Keyword: trans activator of transcription (Tat)

Search Result 4, Processing Time 0.021 seconds

Addition of an N-Terminal Poly-Glutamate Fusion Tag Improves Solubility and Production of Recombinant TAT-Cre Recombinase in Escherichia coli

  • Kim, A-Hyeon;Lee, Soohyun;Jeon, Suwon;Kim, Goon-Tae;Lee, Eun Jig;Kim, Daham;Kim, Younggyu;Park, Tae-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.109-117
    • /
    • 2020
  • Cre recombinase is widely used to manipulate DNA sequences for both in vitro and in vivo research. Attachment of a trans-activator of transcription (TAT) sequence to Cre allows TAT-Cre to penetrate the cell membrane, and the addition of a nuclear localization signal (NLS) helps the enzyme to translocate into the nucleus. Since the yield of recombinant TAT-Cre is limited by formation of inclusion bodies, we hypothesized that the positively charged arginine-rich TAT sequence causes the inclusion body formation, whereas its neutralization by the addition of a negatively charged sequence improves solubility of the protein. To prove this, we neutralized the positively charged TAT sequence by proximally attaching a negatively charged poly-glutamate (E12) sequence. We found that the E12 tag improved the solubility and yield of E12-TAT-NLS-Cre (E12-TAT-Cre) compared with those of TAT-NLS-Cre (TAT-Cre) when expressed in E. coli. Furthermore, the growth of cells expressing E12-TAT-Cre was increased compared with that of the cells expressing TAT-Cre. Efficacy of the purified TAT-Cre was confirmed by a recombination test on a floxed plasmid in a cell-free system and 293 FT cells. Taken together, our results suggest that attachment of the E12 sequence to TAT-Cre improves its solubility during expression in E. coli (possibly by neutralizing the ionic-charge effects of the TAT sequence) and consequently increases the yield. This method can be applied to the production of transducible proteins for research and therapeutic purposes.

Enhanced CEA-specific Immune Responses by Tat-LLO Fusion Protein (Tat-LLO 융합 단백질에 의한 CEA 특이 항종양 면역 반응의 증가)

  • Yi, Soon-Aei;Sohn, Hyun-Jung;Kim, Chang-Hyun;Park, Mi-Young;Oh, Seong-Taek;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • Background: Carcinoembryonic antigen (CEA) is well-known soluble tumor marker frequently detectable in peripheral blood of carcinoma patients and considered as good target for antigen-specific immunotherapy. However, it is known that the induction of immune response to CEA is very difficult because CEA is a self-antigen expressed in fetal cells and weakly expressed in normal colorectal epithelial cells. To enhance anti-tumor immunity specific for CEA, recombinant CEA protein was modified using listeriolysin O (LLO) for endosomal lysis and trans activator of transcription (Tat) domain for transducing extracellular proteins into cytoplasm. Methods: After immunization using dendritic cells pulsed with Tat-CEA, both Tat-CEA and LLO, and both Tat-CEA and Tat-LLO, antibody titer to CEA and LLO, cytotoxic T lymphocyte activity and the frequency of IFN-${\gamma}$ producing T lymphocytes were measured. Results: Immunization using DC pulsed with both Tat-CEA and Tat-LLO protein showed the increasement of production of CEA-specific antibody in serum, cytotoxic T lymphocyte activity, the frequency of IFN-${\gamma}$ secreting T cells, compared with DC pulsed with both Tat-CEA and LLO. Furthermore the ratio of CD8+T cell to $CD4^+$ cell among CEA-specific T cells was increased in group pulsed with both Tat-CEA and Tat-LLO. Conclusion: These results suggested that DC vaccine using Tat-LLO could be used for the development of effective immunotherapy for the treatment of tumor.

Enhancement of Adenoviral Transduction and Immunogenecity of Transgenes by Soluble Coxsackie and Adenovirus Receptor-TAT Fusion Protein on Dendritic Cells

  • Kim, Hye-Sung;Park, Mi-Young;Park, Jung-Sun;Kim, Chang-Hyun;Kim, Sung-Guh;Oh, Seong-Taek;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.192-198
    • /
    • 2006
  • Background: Investigating strategy to enhance efficiency of gene transfer via adenovirus is critical to sustain gene expression in targeted cells or tissues to regulate immune responses. However, the use of adenovirus as a gene delivery method has been limited by the native tropism of the virus. In this study, the critical parameter is to improve the efficient binding of viral particles to the plasma membrane prior to cellular uptake. Methods: Human immunodeficiency virus (HIV-1) trans-acting activator of transcription (TAT), a protein transduction domain, was fused to the ectodomain of the coxsackie-adenovirus receptor (CAR). The CAR-TAT protein was produced from a Drosophila Schneider 2 cells (S2) transfected with CAR-TAT genes. The function of CARTAT was analyzed the efficiency of adenoviral gene transfer by flow cytometry, and then immunizing AdVGFP with CAR-TAT was transduced on dendritic cells (DCs). Results: S2 transfectants secreting CAR-TAT fusion protein has been stable over a period of 6 months and its expression was verified by western blot. Addition of CAR-TAT induced higher transduction efficiency for AdVGFP at every MOI tested. When mice were vaccinated with DC of which adenoviral transduction was mediated by CAR-TAT, the number of IFN-${\gamma}$ secreting T-cells was increased as compared with those DCs transduced without CAR-TAT. Conclusion: Our data provide evidence that CAR-TAT fusion protein enhances adenoviral transduction and immunogenecity of transgenes on DCs and may influence on the development of adenoviral-mediated anti-tumor immunotherapy.

Transduced Tat-α-Synuclein Protects against Oxidative Stress In vitro and In vivo

  • Choi, Hee-Soon;Lee, Sun-Hwa;Kim, So-Young;An, Jae-Jin;Hwang, Seok-Il;Kim, Dae-Won;Yoo, Ki-Yeon;Won, Moo-Ho;Kang, Tae-Cheon;Kwon, Hyung-Joo;Kang, Jung-Hoon;Cho, Sung-Woo;Kwon, Oh-Shin;Choi, Jin-Hi;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.253-262
    • /
    • 2006
  • Parkinson's disease (PD) is a common neurodegenerative disorder and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Although many studies showed that the aggregation of $\alpha$-synuclein might be involved in the pathogenesis of PD, its protective properties against oxidative stress remain to be elucidated. In this study, human wild type and mutant $\alpha$-synuclein genes were fused with a gene fragment encoding the nine amino acid trans activator of transcription (Tat) protein transduction domain of HIV-l in a bacterial expression vector to produce a genetic in-frame WT Tat-$\alpha$-synuclein (wild type) and mutant Tat-a-synucleins (mutants; A30P and A53T), respectively, and we investigated the protective effects of wild type and mutant Tat-$\alpha$-synucleins in vitro and in vivo. WT Tat-$\alpha$-synuclein rapidly transduced into an astrocyte cells and protected the cells against paraquat induced cell death. However, mutant Tat-$\alpha$-synucleins did not protect at all. In the mice models exposed to the herbicide paraquat, the WT Tat-$\alpha$-synuclein completely protected against dopaminergic neuronal cell death, whereas mutants failed in protecting against oxidative stress. We found that these protective effects were characterized by increasing the expression level of heat shock protein 70 (HSP70) in the neuronal cells and this expression level was dependent on the concentration of transduced WT Tat-$\alpha$-synuclein. These results suggest that transduced Tat-$\alpha$-synuclein might protect cell death from oxidative stress by increasing the expression level of HSP70 in vitro and in vivo and this may be of potential therapeutic benefit in the pathogenesis of PD.